写点什么

机器学习笔记(二):线性回归

  • 2020-03-04
  • 本文字数:3809 字

    阅读完需:约 12 分钟

机器学习笔记(二):线性回归

线性模型是机器学习中最基本的模型,既可以用来做回归任务,也可以用来做分类任务。这篇文章我们主要介绍用来做回归任务的线性回归。


线性模型主要有三个优点:


(1)形式简单,易于建模;


(2)作为机器学习最基础的模型,许多功能强大的非线性模型都是在线性模型的基础上加入层级结构或高维映射演进而来;


(3)具有良好的模型可解释性,权重 w 直观体现了各特征属性在预测中的重要性。


线性回归,顾名思义,就是通过学习得到一个特征的线性组合模型来预测连续值。


按特征(属性)数目,线性回归可以分为一元线性回归和多元线性回归:


一元线性回归模型


a 和 b 学得之后,模型就确定了,这里,自变量只有一个,所以该模型是平面上的一条直线。


多元线性回归模型


用向量形式改写为


w 是各自变量(特征属性)的权重,wi 绝对值越大,表明特征 xi 对于预测值影响越大,该模型自变量有多个,所以在空间上是一个平面。


学习策略及模型评估


如何求解自变量的权重 w 和 b 呢?通常采用极小化模型预测输出和真实值之间的距离,在回归任务中,采用基于均方误差最小化的“最小二乘法”来求解 w 和 b。


线性模型的评估主要使用均方误差、均方根误差、R-Square(被模型解释的信息比例)


  • 均方误差(MSE)(使得均方误差最小,同时也可作为线性模型的损失函数)如下,求解 w 和 b 使得 E 最小化的的过程,就称为线性回归模型的“最小二乘参数估计”


均方误差的几何意义:试图找到一条直线或一个平面,使得所有样本到直线上的欧式距离之和最小。如下图所示,分别表示一元线性模型和多元线性模型的均方差几何表示。



  • 均方根误差(RMSE):实际上就是均方根(MSE)的平方根


RMSE =


  • R Squared:变量对于预测值的解释程度,可以简单理解为模型对于预测值解释能力的强弱,取值在[0,1]之间,类似于分类算法中的正确率。一般情况下,越大越好。


SSres 为拟合数据和原始数据的误差平方和,SStot 为原始数据和均值之差的平方和


多项式回归模型


现实问题中,直线或者平面并不能很好地拟合大部分数据,说明特征属性和预测值之间并没有很强的线性关系,我们需要采用多项式回归模型进行曲线或超平面拟合,这是一种特殊的线性模型,模型中自变量的指数大于 1,那就是多项式回归模型,一元多项式模型公式如下:


线性回归实战练习:


下面通过一个小的实战来对线性回归有一个更深入的理解,实战中上面提到的知识都会用到。我采用 sklearn 中自带的数据集 boston,该数据集包含对波士顿房价影响的多个特征属性值及对应的房价值,可以用来做回归任务的训练。


  • 数据分析


先看下数据的基本情况和有哪些特性:一共有 506 条数据,13 个特征属性


boston_data = datasets.load_boston()print (boston_data['data'].shape,"\n", boston_data['DESCR'])------------------------------------------------------------(506, 13)  Boston House Prices dataset        - CRIM     per capita crime rate by town        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.        - INDUS    proportion of non-retail business acres per town        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)        - NOX      nitric oxides concentration (parts per 10 million)        - RM       average number of rooms per dwelling        - AGE      proportion of owner-occupied units built prior to 1940        - DIS      weighted distances to five Boston employment centres        - RAD      index of accessibility to radial highways        - TAX      full-value property-tax rate per $10,000
复制代码


通过变量关系图看下各特征与预测值(房价)的相关性如何:


# 通过双变量关系图查看变量与预测值相关性data = pd.DataFrame(datasets.load_boston().data)data.columns = boston_data['feature_names']data['price'] = boston_data['target']sns.pairplot(data, x_vars=data.columns, y_vars='price', kind='reg')plt.show()
复制代码



从双变量关系图中可以看出,RM、LSTAT 这两个特征和房价的线性关系比较明显,其他特征的线性关系较弱。


  • baseline 模型


先采用最简单的线性模型对数据进行预测,看效果怎么样。


  • Python 代码


def Evaluate_model(true_data_X, true_data_y, pred_data, model):    # 计算MSE(均方差)    print ("MSE:",metrics.mean_squared_error(true_data_y, pred_data))    # 计算RMSE(均方根差)    print ("RMSE:",np.sqrt(metrics.mean_squared_error(true_data_y, pred_data)))    # 模型R方    print ("R^2:", model.score(true_data_X, test_y)) data_np = boston_data['data']target_np = boston_data['target'] # 划分训练集和测试集train_X,test_X, train_y, test_y = train_test_split(data_np,target_np,test_size = 0.4,random_state = 0)model_linear = LinearRegression()model_linear.fit(train_X, train_y)# 预测y_pred_linear = model_linear.predict(test_X)# 模型评估Evaluate_model(test_X, test_y, y_pred_linear, model_linear)--------------------------------------------------------------MSE: 25.7971648592073RMSE: 5.079090948113382R^2: 0.6881784869675758
复制代码


  • 多项式回归模型


从 baseline 模型的预测结果来看,效果并不是特别好,R-Squared 只有 0.68,对测试数据的拟合一般,从前面数据分析的变量关系图也可以看出,大部分特征和预测值之间并不是明显的线性关系,我们可以提高自变量的维度,也就是提高 x 的阶数,将模型变换为多项式回归模型。


  • Python 代码


# 多项式回归,最高阶设为2,阶数太高容易导致过拟合poly = PolynomialFeatures(degree=2, interaction_only=True,include_bias=True)train_X_poly = poly.fit_transform(train_X)test_X_poly = poly.transform(test_X)model_Polynomial = LinearRegression()model_Polynomial.fit(train_X_poly, train_y)y_pred_Polynomial = model_Polynomial.predict(test_X_poly) # 模型评估Evaluate_model(test_X_poly, test_y, y_pred_Polynomial, model_Polynomial)---------------------------------------------------------------------MSE: 17.989393685174065RMSE: 4.241390536743117R^2: 0.782554401304885
复制代码


看来预测房价,多项式回归模型比单纯的线性回归模型更适合,MSE 和 RMSE 都减少,并且 R-Squared 提升到 0.78,模型性能有较大程度的提升。


选定多项式回归模型后,还有没有方法继续优化提升模型性能呢?答案是正则化,正则化在数学推导上比较复杂,我们可以把它简单理解为一种特征选择方法,在模型中添加“惩罚系数”使得一些不那么重要的特征降低在模型中的影响度,常用的正则化方法有 Lasso 和 Ridge。


Lasso 方法倾向于压缩一部分特征的相关系数为 0,保留一小部分特征,通俗的理解就是如果两个特征变量如果强相关的话,Lasso 方法会将其中一个不那么重要特征的相关系数变为 0。而 Ridge 方法的做法则是尽量保留特征信息,只是把相关变量的系数同时缩小。


我尝试把两种正则化方法应用到模型中,看看效果如何


  • Python 代码


# 引入Lasso正则化model_lasso = LassoLarsCV()model_lasso.fit(train_X_poly, train_y)y_pred_lasso = model_lasso.predict(test_X_poly)# 模型评估Evaluate_model(test_X_poly, test_y, y_pred_lasso, model_lasso)----------------------------------------------------------MSE: 14.18038792061974RMSE: 3.765685584408202R^2: 0.8285955049352569---------------------------------------------------------# 引入Ridge正则化model_ridge = RidgeCV(alphas=[0.1, 1.0, 10.0])model_ridge.fit(train_X_poly, train_y)y_pred_ridge = model_ridge.predict(test_X_poly)# 模型评估Evaluate_model(test_X_poly, test_y, y_pred_ridge, model_ridge)-------------------------------------------------------------MSE: 15.737364846211017RMSE: 3.967034767456799R^2: 0.8097756499882447
复制代码


从预测的结果来看,正则化对模型预测率有一定帮助,如果特征属性非常多,而训练样本又比较少的情况下,正则化对应模型性能提升会有比较好的效果,最后,通过图形比较看看 baseline 模型和优化后引入 Lasso 正则化的模型,图中表示的是预测值 y 和真实值 x 的变化关系,离直线 y=x 越近的点表示预测准确度越高。从图上可以发现,引入 Lasso 方法的图形中,点明显更靠近直线,说明预测偏差更小,MSE、RMSE 和 R^Squared 等模型评估参数也说明了这一点。


作者简介


华为云专家周捷


2020-03-04 14:251527

评论

发布
暂无评论
发现更多内容

前端、后端、测试、研发经理必备技能-ApiPost接口管理工具

CodeNongXiaoW

大前端 测试 后端 接口工具

Go- if-else结构

HelloBug

if Go 语言 else

apipost--接口流程化测试

与风逐梦

软件测试 接口测试 软件自动化测试

FusionInsight怎么帮「宇宙行」建一个好的「云数据平台」?

华为云开发者联盟

大数据 数据仓库 FusionInsight 云数据平台 LakeHouse

国产数据库的挑战与机遇

晨山资本

数据库 大数据 云原生 超融合

支持 10 亿日流量的基础设施:当 Apahce APISIX 遇上腾讯

API7.ai 技术团队

案例 API网关 APISIX Meetup 腾讯游戏

在openGauss上做开发?这个大赛拿出30万寻找开源的你

华为云开发者联盟

数据库 开源 信创 opengauss 鲲鹏

遇见低码:在价值中审视

华为云开发者联盟

ide 低代码 应用 开发语言 低成本

在java程序中使用protobuf

程序那些事

Java protobuf 程序那些事

SphereEx CEO 张亮:数据库上云是大势所趋|初心·问

SphereEx

数据库 开源

手把手教你写 Gradle 插件 | 数据采集

神策技术社区

程序员 埋点 数据化 神策数据

架构实战营模块一作业

michael

架构实战营

原来一条select语句在MySQL是这样执行的《死磕MySQL系列 一》

咔咔

MySQL 数据库

自适应负载均衡算法原理与实现

万俊峰Kevin

负载均衡 微服务 负载均衡算法 Go 语言

神策分析 Android SDK 网络模块解析

神策技术社区

程序员 代码 神策数据

vivo商城计价中心 - 从容应对复杂场景价格计算

vivo互联网技术

Java 架构 后端 促销系统

MySQL 系列教程之(十二)扩展了解 MySQL 的存储过程,视图,触发器

若尘

MySQL 数据库 8月日更

LeetCode刷题07-简单 整数翻转

ベ布小禅

8月日更

前端人员必会工具-apipost两分钟上手(2分钟玩转apipost)

Proud lion

大前端 测试 后端 Postman 开发工具

神策分析 iOS SDK 全埋点解析之启动与退出

神策技术社区

ios 代码 埋点 神策数据

protocol buffer没那么难,不信你看这篇

程序那些事

Java protobuf 程序那些事

保护亿万数据安全,Spring有“声明式事务”绝招

华为云开发者联盟

spring 数据安全 事务管理

基于Mybatis-plus实现多租户架构

码农参上

多租户 8月日更 Mybatis-Plus

容器监控薅光了头发?这篇你再也不能错过!

观测云

json Docker 云计算 Linux 容器

如何构建 Spring Boot 12 因素应用

码语者

Sprint Boot

图文并茂的聊聊ReentrantReadWriteLock的位运算

程序猿阿星

ReentrantReadWriteLock 位运算

架構實戰營 - 畢業設計

Frank Yang

架构实战营

混合云时代来临,你的存储ready了吗?

焱融科技

云计算 分布式 高性能 云存储 混合云

带你认识MRS CDL架构

华为云开发者联盟

数据库 大数据 FusionInsight MRS MRS CDL 实时同步

拿捏!隔离级别、幻读、Gap Lock、Next-Key Lock

艾小仙

MySQL sql 面试 大前端

架构实战营 模块六作业

孫影

架构实战营 #架构实战营

机器学习笔记(二):线性回归_服务革新_华为云开发者联盟_InfoQ精选文章