AICon 北京站 Keynote 亮点揭秘,想了解 Agent 智能体来就对了! 了解详情
写点什么

Amazon Neptune – 完全托管的图形数据库服务

  • 2019-11-05
  • 本文字数:2755 字

    阅读完需:约 9 分钟

Amazon Neptune – 完全托管的图形数据库服务

在我们用来支持现代生活的所有数据结构和算法中,图形不断改变着世界。各企业不断产生和获取关系复杂的丰富数据。然而,开发人员仍然不得不在传统数据库中对这些复杂关系进行建模。这导致查询极为复杂,并且成本高昂,随着关系的增加,性能也会不断下降。我们希望能简化这些越来越复杂的新式数据集、关系和模式的处理。

欢迎 Amazon Neptune

今天,我们要发布 Amazon Neptune 有限预览版,这是一个快速可靠的图形数据库服务,可供客户轻松洞悉高度连接的数据集之间的关系。Amazon Neptune 的核心是专门构建的高性能图形数据库引擎,它进行了优化,可存储数十亿关系并将图形查询延迟减至毫秒级。Amazon Neptune 作为完全托管的数据库提供,让客户能够腾出手来集中精力开发其应用程序,而不用忙于执行枯燥的重复性操作,如维护、修补、备份和恢复。该服务支持快速故障转移、时间点恢复以及多可用区部署,从而实现高可用性。它支持多达 15 个只读副本,您可以将查询吞吐量扩展到每秒数十万个查询。Amazon Neptune 在 Amazon Virtual Private Cloud 内运行,因此您可以加密静态数据,可完全控制传输中数据和静态数据的完整性。



这项服务有很多有趣的功能,不过可能很多人还不熟悉图形数据库,因此我们首先介绍一下概念。

图形数据库

图形数据库用于存储顶点 (节点) 和边缘 (关系或连接),这两种元素都可以键值对的形式存储其属性。对于连接的上下文关系驱动数据,图形数据库很有用。一些典型的应用包括社交媒体网络、推荐引擎、驾车路线、物流、诊断、欺诈检测以及基因测序。


Amazon Neptune 支持两种开放式图形描述和查询标准:


  • 使用 Gremlin 查询的 Apache TinkerPop3 样式属性图。Gremlin 是一种图形遍历语言,在这种语言中,查询是由沿着边缘到节点的离散步骤组成的遍历。通过用于 TinkerPop 的现有工具和客户端,可以快速开始使用 Neptune。

  • 使用 SPARQL 查询的资源描述框架 (RDF)。SPARQL 是一种声明式语言,它基于 W3C 的 Semantic Web 标准。它遵从“主->谓->宾”模型。具体地说,Neptune 支持以下标准:RDF 1.1、SPARQL Query 1.1、SPARQL Update 1.1 和 SPARQL Protocol 1.1。


如果现有应用程序可使用 SPARQL 或 TinkerPop,则只需更新这些应用程序所连接的终端节点,就可以开始使用 Neptune。


我们介绍一下如何启动 Amazon Neptune。

启动 Amazon Neptune

首先导航到 Neptune 控制台,然后单击“Launch Neptune”打开启动向导。



在第一个屏幕上,只需命名实例和选择实例类型。接下来配置高级选项。如果您以前启动过基于实例的 AWS 数据库服务,如 Amazon Relational Database Service (RDS)Amazon ElastiCache,现在的很多步骤您可能会觉得很熟悉。



Amazon Neptune 在 VPC 内安全运行,可以创建它自己的安全组,您可以添加 EC2 实例以便访问。



现在,我们可以配置其他一些选项,如参数组、端口和群集名称。



在下一个屏幕上,我们可以启用基于 KMS 的静态加密、故障转移优先级和备份保留时间。



与 RDS 类似,数据库维护可由该服务处理。


实例配置完毕后,您可以在群集的“Details”页面上找到连接终端节点。在我这个例子中是 triton.cae1ofmxxhy7.us-east-1.rds.amazonaws.com


使用 Amazon Neptune

如上所述,Amazon Neptune 可以使用两个不同的查询引擎。


要连接到 Gremlin 终端节点,可通过 /gremlin 使用终端节点执行某些操作,如:


Bash


curl -X POST -d '{"gremlin":"g.V()"}' https://your-neptune-endpoint:8182/gremlin
复制代码


同样,可以通过 /sparql 连接到 SPARQL 终端节点


Bash


curl -G https://your-neptune-endpoint:8182/sparql --data-urlencode 'query=select ?s ?p ?o where {?s ?p ?o}'
复制代码


我们需要先填充数据库,然后才能查询数据。假设我们对 AWS re:Invent 建模,使用批量加载 API 插入一些数据。


对于属性图,Neptune 支持使用存储在 Amazon Simple Storage Service (S3) 中的 CSV 来加载节点、节点属性、边缘和边缘属性。


典型的顶点 CSV 看起来是这样的:


~label,name,email,title,~idAttendee,George Harrison,george@thebeatles.com,Lead Guitarist,1Attendee,John Lennon,john@thebeatles.com,Guitarist,2Attendee,Paul McCartney,paul@thebeatles.com,Lead Vocalist,3
复制代码


边缘 CSV 看起来是这样的:


~label,~from,~to ,~idattends,2,ARC307,attends22attends,3,SRV422,attends27
复制代码


现在将一个结构类似的 CSV 加载到 Neptune 中,运行如下代码:


Bash


curl -H 'Content-Type: application/json' \https://neptune-endpoint:8182/loader -d '{    "source": "s3://super-secret-reinvent-data/vertex.csv",    "format": "csv",    "region": "us-east-1",    "accessKey": "AKIATHESEARENOTREAL",    "secretKey": "ThEseARE+AlsoNotRea1K3YSl0l1234coVFefE12"  }'
复制代码


将返回:


Json


{    "status" : "200 OK",    "payload" : {        "loadId" : "2cafaa88-5cce-43c9-89cd-c1e68f4d0f53"    }}
复制代码


我使用该返回结果,查询加载状态: curl https://neptune-endpoint:8182/loader/2cafaa88-5cce-43c9-89cd-c1e68f4d0f53


Json


{    "status" : "200 OK",    "payload" : {        "feedCount" : [{"LOAD_COMPLETED" : 1}],        "overallStatus" : {            "fullUri" : "s3://super-secret-reinvent-data/stuff.csv",            "runNumber" : 1,            "retryNumber" : 0,            "status" : "LOAD_COMPLETED",            "totalTimeSpent" : 1,            "totalRecords" : 987,            "totalDuplicates" : 0,            "parsingErrors" : 0,            "datatypeMismatchErrors" : 0,            "insertErrors" : 0        }    }}
复制代码


对于此数据序列化格式,我对各边缘重复执行此加载过程。


对于 RDF,Neptune 支持四种序列化:Turtle、N-Triples、N-Quads 和 RDF/XML。我可以通过同一个加载 API 加载以上所有对象。


现在,我的数据库中已经有数据了,可以运行查询。我们用 Gremlin 以图形遍历形式编写查询。我是 Paul McCartney 的忠实粉丝,我需要查找他将举行的所有演唱会:


g.V().has("name","Paul McCartney").out("attends").id()


这样就定义了一个图形遍历,它查找属性“name”的值为“Paul McCartney”的所有节点 (只有一个!)。接下来,它从该节点沿所有类型为“attends”的边缘查找,获取结果节点的 ID。


==>ENT332==>SRV422==>DVC201==>GPSBUS216==>ENT323
复制代码


Paul 看起来很忙。


希望这个例子能让您简要了解图形数据库的功能。图形数据库为很多客户带来了各种全新可能,而 Amazon Neptune 让大规模存储和查询数据变得更简单。我很高兴看到我们的客户构建出精彩的新产品。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/amazon-neptune-a-fully-managed-graph-database-service/


2019-11-05 08:00925

评论

发布
暂无评论
发现更多内容

语音技术与人工智能:智能语音交互的多场景应用探索

天津汇柏科技有限公司

AI 人工智能

@你,请查收:KaiwuDB 2024 年度总结

KaiwuDB

数据库 分布式多模

苹果Mac版SVN客户端 SnailSVN Pro 免激活版

Rose

Typeeto for Mac:让Mac键盘秒变蓝牙键盘,跨设备输入更高效

Rose

企业流程自动化:AI技术加持,解锁高效运营

合合技术团队

人工智能 AI 自动化 数据治理

定制 CRM 的4个真实用户案例(帮你选择更灵活CRM产品)

NocoBase

开源 CRM 定制化 CRM系统 案例研究

苹果Mac远程管理Royal TSX使用教程

Rose

AIP智能体平台:赋能软件开发与运行的新时代

大东(AIP内容运营专员)

人工智能

WebGL在医学领域的应用

北京木奇移动技术有限公司

软件外包公司 webgl开发 医学领域

转转平台IM系统架构设计与实践(一):整体架构设计

JackJiang

即时通讯;IM;网络编程

pd19虚拟机永久许可证 Parallels Desktop 19下载安装

Rose

JimuReport 积木报表 v1.9.3发布,免费可视化报表

JEECG低代码

数据可视化 报表 报表工具 报表打印 大屏设计器

Java分析工具 JProfiler for mac注册码及安装教程

Rose

KubeEdge SIG AI 产业革新与应用:跨越边界,迎向未来

华为云原生团队

云计算 容器 云原生

企业如何实现多源异构数据的统一化管理?

Aloudata

数据分析 数据管理 数据集成 数据虚拟化 数据编织

数据集成和分析时,应该注意哪些关键因素?

Aloudata

数据分析 数据虚拟化 数据编织

淘宝天猫API接口深度解析:商品详情与关键词搜索商品列表的高效应用

代码忍者

代码编辑器 sublime text破解安装包 附sublime text汉化补丁

Rose

Set A Light 3D Studio:打造专业级3D灯光布局,摄影布光从此得心应手

Rose

BOE(京东方)全新概念级“AI视听中心”亮相CES 2025 携手高通引领智慧家居娱乐新图景

爱极客侠

【连载 10】CountDownLatch

FunTester

一个测试Leader的工作案例

老张

团队管理 项目管理 软件测试 自动化测试

MestReNova 14:精准解析NMR数据,助力科研突破!

Rose

观测云产品更新 | 日志索引、Pipeline、场景图表等优化

观测云

产品迭代

iZotope音乐制作 Ozone Advanced 11直装版下载安装

Rose

WebGL开发虚拟解剖系统

北京木奇移动技术有限公司

软件外包公司 webgl开发 医学解剖

Amazon Neptune – 完全托管的图形数据库服务_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章