AICon 深圳站聚焦 Agent 技术、应用与生态,大咖分享实战干货 了解详情
写点什么

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

  • 2019-11-07
  • 本文字数:1789 字

    阅读完需:约 6 分钟

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

我们对 Apache MXNet 版本 0.12 的发布感到很兴奋。MXNet 社区的参与者密切合作,为用户带来了新的增强功能。在此版本中,MXNet 添加了两项新的重要功能:


  • 对 NVIDIA Volta GPU 的支持,这使用户能够大大减少神经网络模型的训练和推理时间。

  • 对 Sparse Tensor 的支持,这使用户能够以最有利于存储和计算的方式使用稀疏矩阵训练模型。

对 NVIDIA Volta GPU 架构的支持

MXNet v0.12 版本添加了对 NVIDIA Volta V100 GPU 的支持,这使客户训练卷积神经网络的速度比 Pascal GPU 的速度快 3.5 倍。训练神经网络涉及数万亿次的浮点数 (FP) 乘法与加法运算。这些计算通常已使用单精度 (FP32) 完成以实现较高的准确度。但是,最近的研究表明,用户可以通过使用半精度 (FP16) 数据类型的训练获得与使用 FP32 数据类型的训练相同的准确度。


Volta GPU 架构引入了 Tensor Core。每个 Tensor Core 每个时钟周期可执行 64 次乘法和加法混合运算,约为每个 CUDA 核心在每个时钟周期内执行的 FLOPS 的四倍。每个 Tensor Core 执行如下所示的运算:D = A x B + C,其中 A 和 B 是半精度矩阵,而 C 和 D 可以是半精度或单精度矩阵,从而执行混合精度训练。利用新的混合精度训练,用户可以通过对网络的大多数层使用 FP16 并在必要时使用更高精度的数据类型来获得最佳训练绩效,且不会降低精度。



MXNet 使用户能够轻松使用 FP16 训练模型以利用 Volta Tensor Core。例如,您只需在 MXNet 中通过将以下命令选项传递到 train_imagenet.py 脚本即可启用 FP16 训练。


Bash


--dtype float16
复制代码


最近,我们宣布推出一套新的 AWS Deep Learning AMI,它们预安装了针对 Amazon EC2 P3 实例系列中的 NVIDIA Volta V100 GPU 进行了优化的各种深度学习框架,其中包括 MXNet v0.12。只需在 AWS Marketplace 中单击一下鼠标即可开始;或者,您也可以按照此分步指南操作,开始使用您的第一个笔记本

Sparse Tensor 支持

MXNet v0.12 添加了对 Sparse Tensor 的支持,可高效地存储和计算大部分元素为零的张量。我们都很熟悉 Amazon 基于您过去的购买历史记录给出的推荐,并且熟悉 Netflix 基于您过去的查看历史记录和对其他节目的评分给出的节目推荐。这类适用于数百万人的基于深度学习的推荐引擎涉及大部分元素为零的稀疏矩阵的乘法与加法运算。以与在稠密矩阵之间执行矩阵运算相同的方式在稀疏矩阵之间执行的数万亿次矩阵运算在存储和计算方面的效率不高。在默认的稠密结构中存储和操作这类包含许多零元素的稀疏矩阵会导致浪费内存以及对零元素执行不必要的处理。


为了解决这类难点,MXNet 启用了 Sparse Tensor 支持,使 MXNet 用户能够以最有利于存储和计算的方式执行稀疏矩阵运算并更快地训练深度学习模型。MXNet v0.12 支持两大稀疏数据格式:Compressed Sparse Row (CSR) 和 Row Sparse (RSP)。CSR 格式经过优化,可表示包含大量列的矩阵,其中每个行仅包含几个非零元素。RSP 格式经过优化,可表示包含大量行的矩阵,其中大部分行切片都完全是零元素。例如,CSR 格式可用于为推荐引擎编码输入数据的特征向量,而 RSP 格式可用于在训练期间执行稀疏梯度更新。对于大多数常用的运算符 (例如,矩阵点积和元素级运算符),此版本启用对 CPU 的稀疏支持。未来版本中将添加对更多运算符的稀疏支持。


以下代码段说明如何将 scipy CSR 矩阵转换为 MXNet CSR 格式,并使用其中一个向量对其执行稀疏矩阵向量乘法运算。要了解有关在 MXNet 中使用新稀疏运算符的更多信息,请参阅这些教程


Bash


import scipy.sparse as spspimport mxnet as mx# construct a random scipy CSR matrixscipy_csr = spsp.rand(3, 4, format='csr', density=0.5)# convert scipy CSR matrix to MXNet CSR formatmx_csr = mx.nd.sparse.csr_matrix(scipy)# perform sparse matrix-vector multiplicationresult = mx.nd.sparse.dot(mx_csr, mx.nd.ones((4, 1)))
复制代码

后续步骤

MXNet 的入门很简单。可在发行说明中找到此版本的完整更改列表。如果您有疑问或建议,请给我们留言。


作者介绍:



Sukwon Kim 是 AWS Deep Learning 的高级产品经理。他负责开发让客户能够更轻松地使用深度学习引擎的产品,工作重点是开源 Apache MXNet 引擎。在业余时间,他喜欢徒步旅行和旅游。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/apache-mxnet-release-adds-support-for-new-nvidia-volta-gpus-and-sparse-tensor/


2019-11-07 08:00882

评论

发布
暂无评论
发现更多内容

2面技术+HR面+offer,成功入职头条月薪35K

Java 程序员 后端

云栖掠影|回首开源十年,RocketMQ 焕发新生

阿里巴巴云原生

阿里云 RocketMQ 云原生

2021阿里Java高级面试题总结,Dubbo高频面试题+解析

Java 程序员 后端

38岁的中年失业者怎么活下去,Java中级工程师面试题及答案

Java 程序员 后端

3年内被辞退5次,35岁程序员该何去何从,Java工程师必备知识

Java 程序员 后端

46道面试题带你了解高级Java面试,linux教程视频合集

Java 程序员 后端

4面技术5面HR附加笔试面,面试的时候突然遇到答不上的问题怎么办

Java 程序员 后端

2021网易Java高级面试题总结,初级Java程序员面试题

Java 程序员 后端

30岁以后搞Java已经没有前途,java自学编程入门教程,大V推荐

Java 程序员 后端

35岁技术人如何转型做管理?牛客网中级项目笔记,Java高级工程师必备知识

Java 程序员 后端

4面字节跳动拿到Offer,尚学堂java视频下载,初级Java面试题大全

Java 程序员 后端

不要让孩子在12岁之前接触手机游戏

石云升

育儿 10月月更

2021百度Java岗面试真题收录解析,Java开发者必看避坑指南

Java 程序员 后端

027云原生之服务网格应用

穿过生命散发芬芳

云原生 10月月更

2021金九银十面试季,java零基础入门视频教程,成功入职腾讯

Java 程序员 后端

2面技术+HR面+offer,从头到尾,都是精华

Java 程序员 后端

35岁程序员的人生感悟,mongodb入门教程,阿里Java高级工程师面试题

Java 程序员 后端

35岁老年程序员的绝地翻身之路,Java面试重点问题

Java 程序员 后端

推荐两款工具给爱做实验的人

Java 开源 编程 架构

21年Java面经分享,Java面试知识点总结宝典助你通关

Java 程序员 后端

30岁以后搞Java已经没有前途,Java经典排序算法

Java 程序员 后端

3分钟就能完成的Redis主从复制搭建,10天拿到阿里Java岗offer

Java 程序员 后端

4面阿里拿到P7Offer,SpringSecurity如何实现加密和解码

Java 程序员 后端

35岁技术人如何转型做管理,mybatis使用教程,Java全套视频

Java 程序员 后端

25K大牛甩出的超详细面试总结,给班出身的程序员一些建议

Java 程序员 后端

先行一步,7大技术创新和突破,阿里云把 Serverless 领域的这些难题都给解了

阿里巴巴云原生

阿里云 Serverless 云原生 云栖大会

4个改变你编程技能的小技巧,附答案解析

Java 程序员 后端

4面技术5面HR附加笔试面,初级Java面试题大全

Java 程序员 后端

区块链上升为国家战略两周年后 看浪潮下企业如何创新数字化应用

CECBC

阿里技术官终于把这份万字面试手册整理出来了,在Github上获赞89.7K

Java 编程 程序员 架构 面试

4个改变你编程技能的小技巧,非科班生金九银十求职经历

Java 程序员 后端

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章