写点什么

理解递归与动态规划

  • 2020-01-15
  • 本文字数:2530 字

    阅读完需:约 8 分钟

理解递归与动态规划

1、从 Fibonacci 函数的四种实现聊起。

Fibonacci 数列,中文也译作斐波那契数列,相信大多数同学不会陌生,就是经典的兔子问题,以下图片内容来源于网络。



很清晰地,如上所述,如果把自然数到 Fibonacci 数列的映射看作一个函数 U(n)的话,那么有 U(n) = U(n-1) + U(n-2)。编码实现的话,自然是首选递归,Fibonacci 数列的递归实现如下:


Fibonacci数列实现方法1-------递归unsigned int Fibonacci_1(unsigned int n) {        if ((n == 1) || (n == 2)) {               return 1;        }          return Fibonacci_1(n - 1) + Fibonacci_1(n - 2); }
复制代码


看上去非常地简洁,非常地清晰,但是,有没有什么问题?有!而且是大问题,算法复杂度太高了,很容易发现算法复杂度为 O(2^n)。展开来看,大概就是这么个情况。



有没有办法可以优化一下呢?很容易发现,采用上述递归实现算法复杂度之所以高的原因就在于做了太多的重复计算。



到这里我们就要质疑一下,多问一句“有这个必要么?!”


当然没有!保存一下运算结果,以空间来换时间不可以么?来,试试看。


Fibonacci 数列实现方法 2-------递归+去重复计算


unsigned int Fibonacci_2(unsigned int n) {        static unsigned int f[100] = {0};               if ((n == 1) || (n == 2)) {               return 1;        }        else if (0 != f[n]) {               return f[n];        }          f[n] = Fibonacci_2(n - 1) + Fibonacci_2(n - 2);        return f[n]; }
复制代码


看上去似乎要好一点了,但是性能如何呢?来来来,是骡子是马拉出来 66,跑起来才知道。定义测试函数。


void testF(void) {        long t1, t2;        unsigned int fn;          t1 = clock();        fn = Fibonacci_1(40);        t2 = clock();          if (t1 <= t2) {               printf("Fibonacci_1 run time =%u, result = %u \n", t2 - t1, fn);        }          t1 = clock();        fn = Fibonacci_2(40);        t2 = clock();          if (t1 <= t2) {               printf("Fibonacci_2 run time =%u, result = %u \n", t2 - t1, fn);        } }
复制代码


实测结果



没有对比就没有伤害。


来,继续思考,是否还可以继续优化?实现方法 2 是以空间换时间,空间复杂度为 O(n),时间复杂度,因对每个 i<n,f(i)都只需要计算 1 次,因此时间复杂度也为 O(n)。目测,时间复杂度基本上已无优化空间,那么空间复杂度呢?静态数组 f 是否必要?



回过头来再看递归关系:U(n) = U(n-1) + U(n-2),也就是说只要依次算出 U(i),1<=i<n,就自然可以得到 U(n),并且计算 U(n)时,只需要知道 U(n-1)和 U(n-2)的值就可以。而对于 U(i),i<n-2 的值都用不到,保存这些东西干啥呢?由此出发,我们推演出代码实现方案 3


Fibonacci 数列实现方法 3-------正向计算


看上去貌似好简单的样子,没有递归,没有对中间结果的保存,so easy!


再对比一下性能来看看:


就是这么漂亮!


BTW:顺便提一句,事实上对于 Fibonacci 数列,是有通项公项可以直接计算的,这是高中奥数的基本功。


根据递推关系得特征根方程è X^2-X-1 = 0


解特征根方程得特征根è x1 = (1+5^(1/2))/2 x2 = (1-5^(1/2))/2


代入通项公式 F(n) = C1*(x1)^n + C2*(x2)^n,F(1)=1,F(2)=1,解得


è C1=1/(5)^(1/2) C2= -1/(5)^(1/2),得通项公式


èF(n) = ,非本文重点介绍内容,故在此不作过多介绍,如有兴趣,可以私聊。


补充编码实现:


Fibonacci 数列实现方法 4------不动点通项公式


unsigned int Fibonacci_4(unsigned int n) {        double sqrt5 = sqrt(5);        double root1 = (1 + sqrt5) / 2;        double root2 = (1 - sqrt5) / 2;               return (pow(root1, n) - pow(root2, n)) / sqrt5; }
复制代码


注: 实现方法 4,涉及开方,幂,以及除法等数学运算,受限于计算机精度限制,在 n 较大时,计算数值不准确,故不推荐。此外,仅为理论说明。

2、动态规划与递归的关系。

回过头来继续再看,Fibonacci 数列实现方法 2 和 Fibonacci 数列实现方法 3 到底有什么差别,本质上来讲,没有差别。这是由 Fibonacci 数列的递推关系式决定的。实现方法 3 之所以空间复杂度低,那仅是由于 Fibonacci 的递推关系实在是太简单了,F(n)仅依赖于 F(n-1)和 F(n-2),如果递推关系再复杂一些,甚至依赖项的个数再与 n 相关,两者就更像了。


但是从实现设计的思想上来看,两者略有不同。


实现方案 3 是正向的来考虑,换种写法,就是标准的动态规划。


但是这种考虑方式略显得反人类。为什么这样说呢?作为技术面试官,我在面试时,喜欢出一些算法方面的问题,来考察应聘者对基本数据结构和算法的理解,对于 Fibonacci 数列,大多数应聘者,包括能力很强的程序员,都是按照递归来写的(问题是很少有考虑性能因素的,都采用的实现方案 1),很少有人会用实现方案 3,不太符合我们的思维模式。


实现方案 2 相对实现方案 3 要更符合我们的思维模式,递归嘛,只要注意到了递归的性能问题,就自然水道渠成了。如刚才提到的实现方案 2 本质上来讲也是动态规划,或者说跟动态规划没有差别,只要有递推关系存在,本质上就是一样的。动态规划相对于递归,仅仅是减少了些不必要的重复计算而已。递归当然也可以做得到。而且更附合我们的思维模式。


所以,总结一下,涉及递推送关系的算法问题,可以用动态规划思维解决的,用递归一样可以解决,关键在于要注意到算法性能,通过矩阵数组保存中间过程运算结果,从而避免不必要的重复计算。一句话,去除了重复计算的递归就是动态规划。

3、实战演练。

题目描述


给定一个正整数,我们可以定义出下面的公式:


N=a[1]+a[2]+a[3]+…+a[m];


a[i]>0,1<=m<=N;


对于一个正整数,求解满足上面公式的所有算式组合,如,对于整数 4 :


4 = 4;


4 = 3 + 1;


4 = 2 + 2;


4 = 2 + 1 + 1;


4 = 1 + 1 + 1 + 1;


所以上面的结果是 5 。


注意:对于 “4 = 3 + 1” 和 “4 = 1 + 3” ,这两处算式实际上是同一个组合!


解答要求时间限制:1000ms, 内存限制:64MB


输入


每个用例中,会有多行输入,每行输入一个正整数,表示要求解的正整数 N(1 ≤ N ≤ 120) 。


输出


对输入中的每个整数求解答案,并输出一行(回车换行);


样例


输入样例 1 复制


4


10


20


输出样例 1


5


42


627


本文转载自华为云开发者社区。


2020-01-15 15:351529

评论

发布
暂无评论
发现更多内容

【网络信息安全】身份认证,hadoop环境搭建教程

Java 程序员 后端

【计算机网络 1】计算机网络概述,Java高级工程师进阶学习—Java热修复原理

Java 程序员 后端

一文带你了解Java并发中的锁优化,让你的代码运行效率翻倍

Java 程序员 后端

【Spring框架03】DI依赖注入,spring菜鸟教程pdf

Java 程序员 后端

【数据结构与算法 10】算法的时间复杂度和空间复杂度

Java 程序员 后端

一招搞定 Spring Boot 可视化监控!,java进阶教程云盘

Java 程序员 后端

【线程】,Java自学宝典pdf

Java 程序员 后端

【被面试官吊打】从系统角度考虑性能优化,kafkajvm调优

Java 程序员 后端

【初学入门Demo注解版】SpringBoot ,java面试大全下载

Java 程序员 后端

【备战秋招冲击大厂】Java面试题系列,你还没弄明白存储键值对

Java 程序员 后端

【数据库实验】,java语言零基础自学

Java 程序员 后端

【白话设计模式】去哪儿网一面,java面试题刷题软件

Java 程序员 后端

【Spring Boot 8】Okhttp实现GitHub第三方登录

Java 程序员 后端

【SpringMVC笔记】Ajax 入门,springboot源码解读与原理分析

Java 程序员 后端

【线程】(1),java高级特性编程及实战pdf百度云

Java 程序员 后端

一年Java开发经验,阿里巴巴五面(已offer,java原理视频

Java 程序员 后端

一文带你深扒ClassLoader内核,揭开它的神秘面纱

Java 程序员 后端

【Spring Boot 19】Spring Boot整合阿里云OSS实现云存储

Java 程序员 后端

【嵌入式实验】,面试官必问的技术问题之一

Java 程序员 后端

【备战秋招冲击大厂】Java面试题系列(1),springboot入门程序

Java 程序员 后端

一文彻底弄懂如何选择抽象类还是接口,linux基础入门知识

Java 程序员 后端

【大厂面经】我通过了某独角兽公司的魔鬼五面

Java 程序员 后端

【并发编程】深入了解volatile,linux高级编程pdf

Java 程序员 后端

一夜之间火爆GitHub的好文!!阿里资深架构师整理分享

Java 程序员 后端

一文掌握大数据架构师需要具备的能力和格局,别再说你不会JVM性能监控和调优了

Java 程序员 后端

一口气面试6家大厂,已拿5家offer,大厂没有你想象中的难

Java 程序员 后端

一场哔哩哔哩Java开发面试之旅,分享面试经历及复习资料

Java 程序员 后端

【源码分析设计模式 7】Integer中的享元模式

Java 程序员 后端

一份秀出新天际的SpringCloudAlibaba笔记,把微服务玩的出神入化

Java 程序员 后端

【Spring Boot 13】实现热部署,最新Java通用流行框架大全

Java 程序员 后端

【关于封装的那些事】 缺失封装,2021年腾讯Java高级面试题及答案

Java 程序员 后端

理解递归与动态规划_语言 & 开发_华为云开发者联盟_InfoQ精选文章