写点什么

Antonino Rau 谈 Condé Nast 的自然语言处理和内容分析引擎

  • 2019-04-09
  • 本文字数:1962 字

    阅读完需:约 6 分钟

Antonino Rau谈Condé Nast的自然语言处理和内容分析引擎

从 2015 年开始,Conde Nast 创建了一个自然语言处理和内容分析引擎,以改进与其 22 个品牌所创建的内容相关的元数据。新系统使点击率提高了 30%。Conde Nast US 的软件工程师和技术经理 Antonino Rau 最近在一篇分为两部分的博文“Conde Nast的自然语言处理和内容分析”中描述了这个项目背后的动机、系统架构以及他们的 NLP 即服务系统 HAL 的发展。据介绍,他们的目标是用一个系统来取代简单的分类和标记,“自动‘逆向工程’他们的世界级编辑们在其中输入的知识。”


HAL 以电影《2001 太空漫游》中的 HAL-9000 命名,它集成了一个名为 Copilot 的专有内容管理系统(CMS)。HAL 使用 Java 构建,使用预训练或定制训练的模型运行一组分析程序,包括 JVM 内和 JVM 外模型。


HAL 的处理引擎基于一个可并行的有向无环图构建,用来分析和注解内容。它分析了内容的不同方面,提取出各种特征。例如,通过分析内容,它可以提取已知的人,然后用有关个人的链接资源注解响应。其他功能包括主题和分类或者地点和新闻故事。所有这些都带有附加的相关信息。


分析结果的整理受到了Uber Michelangelo的启发,其目标是改进和训练模型,并重复向 HAL 请求静态内容。


InfoQ 联系了Rau,了解他所做的有关 HAL 的工作。


InfoQ:您在博文中写道,“几年前,2015 年,我们决定进入下一个阶段”。你们为什么要改变它的工作方式?编辑之前是否手动为他们的文章添加标签?


Antonino Rau: 主要的动力是对编辑在不同情况下生成的内容进行自动洞察(主题、实体等等)。然后,这种内容智能将结合用户行为,构建片段、推荐和其他功能。是的,以前的编辑会手动标记。后续,他们仍然可以删除自动标签或从受控词汇表中手动添加标签。


InfoQ:您决定在 HAL 中构建自己的自然语言处理系统。您考虑过第三方的选项吗?如果考虑过,是什么让您选择在公司内部进行开发?


Rau: 是的,我们那会考察了第三方,但我们决定搭配使用定制和开源模型,因为 HAL 最初只需要面向英语,而对于该语言,有很多开源的、预训练的模型,我们只针对一种语言建立了自定义模型,对于 OSS 模型不支持的特性也很容易。最近,2018 年 11 月,Conde 决定将Conde Nast US和Conde Nast International纳入一个全球性平台,因此需要支持其他 8 种语言。我们正在研究将第三方模型集成到 HAL 中,加快 HAL 在所有 Conde 市场上、所有那些语言区域的推广。HAL 的好处是它还充当了一个防护层,因此,即使我们集成了供应商,由于它的架构,我们也可以很容易地在混合了 OSS、定制和供应商模型/分析程序的环境中进行操作,并且仍然具有相同的抽象和标准化输出。


InfoQ:您为什么选择了 Java?


Rau:运行 NLP 模型非常消耗 CPU 和内存。此外,从我们的基准、最好的功能和性能方面来看,上述 OSS 模型 Java 均可提供。最后,从 CPU 和内存密集型应用程序的系统性能和鲁棒性方面来看,Java 对于我们似乎是最好的选择。


InfoQ:HAL 的设计,尤其是有向无环图被抽象出来泛化使用令人印象深刻。在您决定采用这种方法之前,是否进行了多次迭代?您还考虑过其他的方法吗?


Rau:最初,这直接是个“管道和过滤器(pipe and filter)”方法,它使用了注解模型,正如博文中提到的文献所说的那样。但后来,我们使用的 JVM 外分析器越来越多,我们也越来越注意到,我们可以建立一个分析器图,通过互相传递注解来加速和并行化处理。


InfoQ:你们开发的东西有开源供别人使用的吗?


Rau:目前还没有,也许将来会有。


InfoQ:您提到你们内部使用了名为 Copilot 的 CMS。有自己的 CMS 对于实现 HAL 有帮助吗?或者,您觉得可以使用任何 CMS 来做吗?


Rau: Copilot 是基于一组名为 Formation Platform 的 API。我们意识到,HAL 的恰当位置是在产生内容的管道中,这样,自动丰富就成为 API 所提供的内容类型和内容模型的组成部分。但反过来也一样,HAL 的其中一个组件 Copilot-linker 是Entity-linker的实例,它会挖掘 Copilot 每天的内容类型,像餐馆、人物、场所等,“学习”编辑们输入系统的知识,自动从文章中提取这些实体,提取它们之间的联系。所以,我认为,在 Conde Nast 的上下文中,更一般来说是出版商的上下文中,内容分析和 NLP 需要与 CMS 高度协同。如果 CMS 是专有的,则更容易使其成为内部流的一部分,从而可以简化下游对这种自动丰富功能的使用,但我想也可以增加 OSS CMS,如果有恰当的扩展点的话。


InfoQ:通过 HAL 的流量是多少?


Rau:每月大约 3000 万请求。我们处理所有文本有变化的修订,有时候也处理不是来自 Condé的内容。


InfoQ:除了点击率之外,您还测量了哪些指标?HAL 对于这些指标是否有任何改进?


Rau:HAL 主题特性拥有数据科学团队的预测模型中的大多数预测特性,都已用于目标受众和消费者订阅偏好。


查看英文原文Q&A on Condé Nast’s Natural Language Processor and Content Analysis


2019-04-09 08:002523
用户头像

发布了 915 篇内容, 共 642.1 次阅读, 收获喜欢 1628 次。

关注

评论

发布
暂无评论
发现更多内容

关于 WordPress 你了解多少?

海拥(haiyong.site)

4月月更

火山引擎 MARS X 今日头条 | 大型App高效协同开发,实现研发流程自动化

字节跳动终端技术

今日头条 字节跳动 研发 火山引擎MARS

鲸智WhaleBI 平民化数据消费还业务以真正的“数据自由”

鲸品堂

方法论 数据 数据治理

Flink整合ElasticSearch详细指南及踩坑记录

五分钟学大数据

4月月更

组合式应用新利器?SaaS新时代事件网格如何解决集成标准化问题

华为云开发者联盟

Serverless 无服务器 事件网格 组合式应用

TASKCTL 变量的函数表达式运算

敏捷调度TASKCTL

批量任务 调度引擎 ETL 自动化运维 调度任务

基于LAXCUS开发分布式视频转码应用

LAXCUS分布式操作系统

分布式计算 分布式应用 视频转码

NFT数字藏品交易平台系统开发搭建

薇電13242772558

NFT 数字藏品

GPU底层技术、全球市场格局分析(中)

Finovy Cloud

人工智能 云计算 云服务器 GPU服务器 GPU算力

当 API 成为服务,我们将连接一切!

鼎道智联

小程序运行时+SAAS级服务,提升研发降本增效作用

Speedoooo

flutter APP开发 SaaS平台 小程序容器 小程序运行时

CrashSight异常崩溃管理解决方案

WeTest

大咖说·智篆商业|颜杰华:数字经济时代,不确定性中的确定性

大咖说

阿里巴巴 数字经济数字时代 数智化 存量时代

什么时候需要使用CRM系统?

低代码小观

CRM 客户关系管理 低代码开发 CRM系统 客户关系管理系统

TiDB 在连锁快餐企业丨海量交易与实时分析的应用探索

TiDB 社区干货传送门

《数字经济全景白皮书》Z世代用户洞察篇(2)重磅发布!

易观分析

Z世代

DDD实战(8):冲刺1战术之聚合设计

深清秋

DDD 软件架构 生鲜电商系统 4月月更

华为云物联网高级攻城狮的4年配置中心实践分享

华为云开发者联盟

开源 DevOps 配置中心 Apollo 业务配置

项目中如何优雅的消除if-else

Rubble

4月日更 4月月更

2022年中国茶饮产业洞察

易观分析

茶饮 产业洞察

LSM-Tree - LevelDb了解和实现

懒时小窝

LSM树 LSM-Tree

豆瓣评分9.0,时隔6年,“Linux命令行圣经”新版终于来了!

图灵教育

Linux shell脚本编程

一起来试玩!在线可编程交互的实时音视频 Web SDK 入门教程

RTE开发者社区

音视频 教程

桌面运维工程师需要会哪些技能?主要是做什么的?

行云管家

云计算 运维 运维工程师 IT运维 云运维

人人都可以学会的产品手册制作方法

小炮

产品宣传手册

TASKCTL 调度设计器作业属性的应用

敏捷调度TASKCTL

分布式 元数据区 ETL 自动化运维 任务调度器

MySQL事务并发带来的问题以及其解决方案分析

乌龟哥哥

4月月更

java高级用法之:JNA中的Structure

程序那些事

Java 程序那些事 JNA 4月月更

【云管平台】三大云管平台厂商详细介绍

行云管家

云计算 云管平台 云堡垒机 云厂商

增长270%!PWA 在 Chrome 平台迎来井喷式增长

鼎道智联

轻量级兼顾本地体验,PWA应用到底有多卷?

鼎道智联

Antonino Rau谈Condé Nast的自然语言处理和内容分析引擎_AI&大模型_Reda Hmeid_InfoQ精选文章