写点什么

谷歌提出 XTREME:评估跨语言的大规模多语言多任务基准

  • 2020-05-15
  • 本文字数:3377 字

    阅读完需:约 11 分钟

谷歌提出XTREME:评估跨语言的大规模多语言多任务基准

据估计,如今地球上有 6000 多种语言,我们穷其一生也不可能通晓那么多语言。那么,如何理解罕见语言呢?有不少科学家正在研究如何利用人工智能使用这些语言工作,XTREME 便是其中之一。


自然语言处理面临的主要挑战是构建这样一套系统:不仅能用英语,而且也能用世界上所有约 6900 多种语言工作。虽然世界上大多数语言都没有足够的数据来单独训练健壮的模型,但幸运的是,许多语言确实共享了相当多底层结构。


在词汇层面,语言中经常会有同源词,比如英语中的“desk”和德语的“tisch”,都是来自于拉丁文的“discus”。同样,许多语言也以相似的方式标记语义角色,例如在汉语和土耳其语中,使用介词来标记时空关系。


在自然语言处理中,为了克服数据稀疏性问题,有许多方法利用多语言的共享结构进行训练。从历史上看,这些方法大多集中于用多种语言执行特定任务。过去几年,在深度学习进步的推动下,试图学习通用多语言表示(如 mBERT、XLM、XLM-R)方法的数量有所增加,这些方法旨在获取跨语言共享知识,这些知识对许多任务都是有用的。然而,在实践中,对这些方法的评估大多集中在一小部分任务上,并且针对相似的语言。


为了鼓励对多语言学习进行更多研究,我们发表了论文《XTREME:用于评估跨语言泛化的大规模多语言多任务基准》(XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization)。XTREME 涵盖了 40 种不同类型的语言(跨 12 个语系),包括 9 个任务,这些任务都需要对不同层次的语法或语义进行推理。选择 XTREME 中的语言是为了最大限度地提高语言多样性、现有任务的覆盖率和训练数据的可用性。


在这些语言中,还有许多尚未充分研究的语言,如 达罗毗荼语系(Dravidian languages)泰米尔语(Tamil)(印度南部、斯里兰卡和新加坡语言)、泰卢固语(Telugu)和马拉雅拉姆语(Malayalam)(印度南部语言),以及 尼日尔 - 刚果语系(Niger–Congo languages)斯瓦希里语(Swahili)和约鲁巴语(Yoruba)(非洲语言)。我们提供了代码和数据,包括运行各种基准的示例,可在 GitHub 上获得。


地址:https://github.com/google-research/xtreme

XTREME 任务和语言

XTREME 中包含的任务涵盖了一系列范式,包括文档分类、结构化预测、文献检索和问答系统。因此,为了使模型在 XTREME 基准测试上取得成功,它们必须学习泛化到许多标准跨语言迁移设置的表示法。



XTREME 基准测试中支持的任务


每个任务都包含 40 种语言的一个子集。为了获得更多用于 XTREME 分析的低资源语言数据,我们将自然语言推理(XNLI)和问答系统(XQuAD)这两个具有代表性任务的测试集从英语自动翻译成其他语言。我们的实验表明,在这些任务中使用翻译后的测试集的模型表现出了与使用人类标记的测试集相当的性能。

零样本评估

要评估使用 XTREME 的性能,首先必须对模型进行多语言文本的预训练,并使用鼓励跨语言学习的目标。然后,对特定任务的英语数据进行微调,因为英语是最有可能提供标签数据的语言。然后,XTREME 评估这些模型的零样本跨语言传输性能,也就是说,在没有特定任务数据的其他语言上对这些模型进行评估。如下图所示,三个步骤的过程,包括从预训练到微调再到零样本迁移。



针对给定模型的跨语言迁移学习过程:对多语言文本进行预训练,然后对下游任务进行英语微调,最后使用 XTREME 进行零样本评估。


在实践中,这种零样本设置的好处之一是计算效率:预训练模型只需对每个任务的英语数据进行微调,然后就可以直接在其他语言上进行评估了。不过,对于有其他语言的标签数据的任务,我们也会在语言数据上进行微调对比。最后,我们通过获得所有 9 个 XTREME 任务的零样本得分来提供一个综合得分。

迁移学习的测试平台

我们使用几种较优的预训练多语言模型进行实验,包括 multilingual BERT,一种流行的 BERT 模型的多语言扩展:XLM 和 XLM-R,两个更大的多语言 BERT 版本,以及大规模多语言机器翻译模型 M4。这些模型有一个共同特点,就是它们已经对来自多语言的大量数据进行了预训练。在我们的实验中,我们选择了这些模型的变体,这些变体在大约 100 种语言上进行了预训练,其中包括基准测试的 40 种语言。


我们发现,尽管模型在大多数现有英语任务上实现了接近人类的表现,但在其他许多语言上的表现却明显低于人类。在所有模型的结构化预测和问答系统任务中,英语的表现与其他语言的表现差距最大,而在结构化预测和文档检索中,不同语言的结果分布最大。


为说明这一点,在下图中,我们按任务和语言的不同,显示了在所有语系中表现最好的模型 XLM-R 在零样本设置中的情况。不同任务之间的得分没有可比性,所以主要关注的应该是不同任务之间语言的相对排名。正如我们所看到的,许多高资源的语言,特别是印欧语系的语言,其排名一直较高。相比之下,该模型在其他语系,如汉藏语系、日本 - 琉球语系、朝鲜语系、尼日尔 - 刚果语系等语言上的表现较差。



XTREME 中所有任务和语言在零样本设置下的最佳表现模型 XLM-R 的性能。所报的分数是基于特定任务的度量标准的百分比,在不同任务中并不能直接比较。人类的表现(如果有的话)以红星表示,每种语系的具体示例均以其 ISO 639-1 编码表示。


总的来说,我们进行了一些有趣的观察。


  • 在零样本设置中,M4 和 mBERT 在大多数任务中都能与 XLM-R 竞争,而在特别有挑战性的问答系统任务中,后者的表现要优于它们。例如,在 XQuAD 上,XLM-R 的得分为 76.6,而 mBERT 和 M4 的得分分别为 64.5 和 64.8,在 MLQA 和 TyDi QA 上也有类似的得分差距。

  • 我们发现,使用机器翻译的基准,无论是翻译训练数据还是测试数据,都非常有竞争力。在 XNLI 任务中,mBERT 在零样本设置中得分为 65.4,而在使用翻译训练数据时得分为 74.0。

  • 我们观察到,少样本设置(即使用有限数量的语言内标记数据,如果可用的话)对于较简单的任务(如命名实体识别)特别有竞争力,但对于较复杂的问答系统任务来说,作用不大。这一点可从 mBERT 的表现中看出,在少样本设置中,mBERT 在命名实体识别任务上的表现提到了 42%,得分从 62.2 提高到 88.3,但对于问答系统任务(TyDi QA),只提高了 25%(得分从 59.7 提高到 74.5)。

  • 总的来说,在所有模式和环境中,英语与其他语言的表现仍存在较大差距,这说明跨语言迁移的研究仍然有很大的潜力。

跨语言迁移分析

与之前关于深度模型的泛化能力的观察类似,我们发现,与具有更多预训练数据的 XLM-R 相比,如果一种语言有更多的预训练数据可用,如 mBERT,那么结果就会有所改善。然而,我们发现,这种相关性对于结构化预测任务、词性(part-of-speech,POS)标记和命名实体识别(named entity recognition,NER)来说并不成立,这表明当前的深度预训练模型无法充分利用预训练数据迁移到这类语法任务中。我们还发现,模型在迁移到非拉丁文脚本时存在困难。这在词性标记任务上表现得尤为明显,mBERT 在西班牙语上的零样本正确率为 86.9,而在日语上的零样本正确率仅为 49.2。


对于自然语言推理任务 XNLI,我们发现,模型对一个英语测试实例和另一种语言的同一个测试实例进行预测,大约有 70% 的时间,模型会做出相同的预测。半监督的方法可能有助于提高实例预测与它们在不同语言翻译之间的一致性。我们还发现,这些模型很难预测英语训练数据中没有出现的词性标记序列,因为它们是在英语训练数据上进行微调的,这凸显了这些模型很难从用于预训练的大量未标记数据中学习其他语言的语法。对于命名实体识别,模型在语言距离很大的英语训练数据中没有出现的实体时最困难:印尼语(Indonesian)和斯瓦西里语(Swahili)的正确率分别为 58.0 和 66.6,而葡萄牙语(Portguese)和法语(French)的正确率分别为 82.3 和 80.1。

多语言迁移学习研究进展

尽管英语只占世界人口的 15% 左右,但它一直是自然语言处理领域最新进展的焦点。我们相信,在深度上下文表示的基础上,我们现在有了工具,可以在服务于世界上其他语言的系统上取得实质性的进展。我们希望,XTREME 能够推动多语言迁移学习的研究,就像 GLUE 和 SUperGLUE 这样的基准模型如何推动深度单语言模型的发展一样,包括 BERT、RoBERTa、XLNet、AIBERT 等。


作者简介:


Melvin Johnson,Google Research 高级软件工程师。


Sebastian Ruder,DeepMind 研究科学家。


原文链接:


https://ai.googleblog.com/2020/04/xtreme-massively-multilingual-multi.html


2020-05-15 14:502391

评论

发布
暂无评论
发现更多内容

物联网平台简介——产品功能类

阿里云AIoT

大数据 安全 物联网平台 物联网 IoT

日均数亿推送稳定性监控实践

得物技术

Java 设计模式 重构 SLA 企业号九月金秋榜

CISO 需考虑的五项 Kubernetes 安全措施

SEAL安全

Kubernetes 软件供应链安全

面试突击85:为什么事务@Transactional会失效?

Java快了!

【等保小知识】等级保护单项测评包括哪些项目?

行云管家

等保 等级保护 等级测评

Kyligence 入选 Gartner 指标中台创新洞察报告

Kyligence

指标管理 指标中台 数据分析管理

物联网平台功能介绍——产品功能类

阿里云AIoT

大数据 物联网平台 物联网 IoT 设备管理

我的C/C++技术成长之路

Fire_Shield

程序人生 C/C++ 9月月更

开发者有话说|从心出发

胖虎不秃头

个人成长

总结了一些vue相关的题目,话说今年前端面试难度好大

bb_xiaxia1998

Vue 前端

leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal 从前序与中序遍历序列构造二叉树(中等)

okokabcd

LeetCode 算法与数据结构

MobTech 短信验证 Flutter插件

MobTech袤博科技

flutter ios android

Docker 的快速入门

Docker 9月月更

从 OLAP 到指标中台 SaaS,关键指标赋能业务管理

Kyligence

OLAP Kyligence 数据管理 指标中台

以Vue为代表的提升小程序开发效率框架及工具

Geek_99967b

小程序

Wiki在企业内部的应用和管理,如何构建有效的Wiki系统?

Baklib

从0到1项目搭建-框架搭建(附源码)

微枫Micromaple

架构 springboot Druid Mybatis-Plus 9月月更

异步处理 —— RxJS Observable

掘金安东尼

前端 9月月更

MySQL DDL执行方式-Online DDL介绍

京东科技开发者

MySQL 数据库 ddl DML Online DDL

百度交易中台之资产系统架构浅析

百度Geek说

数据库 架构 资产管理

kubectl 插件推荐: kubectl-watch

云原生技术社区

k8s 插件 kubectl kubectl插件 kubectl-watch

多标签用户画像分析跑得快的关键在哪里?

跳楼梯企鹅

IM跨平台技术学习(二):Electron初体验(快速开始、跨进程通信、打包、踩坑等)

JackJiang

即时通讯IM

前端面试5家公司,被经常问到的vue面试题

bb_xiaxia1998

Vue 前端

一张图读懂「融云一站式全生态出海解决方案」

融云 RongCloud

白皮书 社交网络

微信小程序开发|宿主环境详解

陈橘又青

9月月更

技术分享| 快对讲融合视频监控功能设计

anyRTC开发者

监控 音视频 调度 快对讲 GB28181

【IT运维】如何有效保障服务器账号密码安全?

行云管家

运维 IT运维 行云管家 账号安全

VoneBaaS平台让区块链服务触手可得

旺链科技

区块链 产业区块链 VoneBaaS 企业号九月金秋榜

SQL就业市场最吃香!解密为什么SQL历经半个世纪仍经久不衰?

雨果

sql

英伟达NVIDIA为何可以在高性能计算GPU中处于不败地位?

GPU算力

谷歌提出XTREME:评估跨语言的大规模多语言多任务基准_AI&大模型_Sebastian Ruder_InfoQ精选文章