写点什么

“理想解决方案”:Daltix 的自动化数据湖归档节省了 10 万美元

  • 2022-12-05
    北京
  • 本文字数:2367 字

    阅读完需:约 8 分钟

“理想解决方案”:Daltix的自动化数据湖归档节省了10万美元

本文最初发布于 Backblaze 官方博客。



在快消领域,Daltix 是提供完整、透明、高质量零售数据的先行者。GFK 和联合利华等全球行业领导者依靠他们的定价、产品、促销和位置数据来制定入市策略并做出关键决策,对 Daltix 来说,维护一个可靠的数据生态系统势在必行。


自 2016 年成立以来,随着公司的发展,Daltix 处理的数据量呈指数级增长。他们目前管理着大约 250TB 的数据,分散在数十亿个文件中,很快就造成了巨大的时间和资源消耗。Daltix 的基础设施几乎完全是围绕 AWS 构建,因为需要管理数十亿个极小的文件,所以在可扩展性和成本效益方面,AWS 的存储选项已经开始无法满足他们的需求。


我们与 Daltix 首席软件工程师 Charlie Orford 进行了交流,了解他们如何迁移到 Backblaze B2 云存储以及他们从那个过程中得出了什么结论。以下是其中的一些要点:


  • 他们使用一个自定义引擎将数十亿个文件从 AWS S3 迁移到 Backblaze B2;

  • 月度成本减少了 2500 美元,数据的可移植性和可靠性都得到了提升;

  • Daltix 创建的基础设施每天可以自动备份 840 万个数据对象。


请继续阅读,看看他们是如何做到的。


一个基于 AWS 构建的复杂数据管道


Daltix 在公司创立初期创建的基于 S3 的基础设施,大部分还完好无损。过去,数据管道将从网络上抓取的资源直接写入 Amazon S3,经由基于 Lambda 的提取器进行标准化后,再发送回 S3。然后,由 AWS Batch 选取要使用其他数据源进行补充和丰富的资源。


所有这些步骤都是在 Daltix 的分析师团队准备好数据之前进行的。为了优化流程并提高效率,Orford 开始将该流程的部分环节纳入到 Kubernetes 中,但数据存储仍然存在问题;Daltix 每天生成大约 300GB 的压缩数据,而且这个数值还在迅速增长。“随着数据收集规模的扩大,我们必须更加关注成本控制、数据可移植性和可靠性,”Orford 说,“这些都是显而易见的,但规模大了,就更加重要了。”


成本方面的考量促使我们寻找更友好的归档存储


到 2020 年,Daltix 开始意识到,在 AWS 中构建这么多基础设施存在局限性。例如,围绕 S3 元数据进行的大量定制使得移动对象的能力完全受制于目标系统与 S3 的兼容性。Orford 还担心,在 S3 中永久存储如此巨大的数据湖的成本。如他所言,“很明显,没有必要把所有东西都永远存在 S3 中。如果不采取任何措施,那么我们的 S3 成本将继续上升,并最终远远超出我们使用其他 AWS 服务的成本。”



服务器成本对比


因为 Daltix 要处理数十亿个小文件,所以不可能使用 Glacier,因为它的定价模式是基于检索费用的。即使是使用 Glacier 即时检索,Daltix 所处理的文件数量也会使他们每年额外支付 20 万美元的费用。因此,Daltix 的数据收集团队(公司 85% 以上的数据都来自这个团队)推动实施了一种可替代的解决方案,解决了一些相互矛盾的问题:


  • 数据湖的庞大规模;

  • 需要将原始资源存储为离散文件(这意味着无法进行批处理);

  • 团队能够投入的时间和精力有限;

  • 简化解决方案,以保证其可靠性。


Daltix 决定使用 Amazon S3 进行热存储,并将暖存储转移到新的归档解决方案中,这可以降低成本,同时保持重要数据可访问——即使目的是将文件存储在别处。Orford 说:“重要的是要找到某个非常容易集成而且开发风险低的东西,并且有助于降低我们的成本。对我们来说,Backblaze 确实可以满足所有要求。”


只是初步迁移每月就立省 2000 美元


在开始全面迁移之前,Orford 和他的团队做了概念验证(POC),以确保解决方案解决了他们重点关注的问题:


  • 确保海量数据成功迁移;

  • 避免数据损坏并使用审计日志检查错误;

  • 保留每个对象的自定义元数据。


“早期,我们与 Backblaze 合作,定制了一个可以满足我们所有需求的迁移工具,”Orford 说,“这给了我们继续前进的信心。”Backblaze 为我们定制了一个迁移引擎,可以保证迁移过程能够可靠地传输整个数据湖,并且保证对象级元数据完好无损。在成功迁移了一开始的 POC 存储桶之后,Daltix 就拥有了开始建模和预测未来成本所需的一切。Orford 说道:“在开始接触 Backblaze 之后,我们便不再寻找其他选项“。

2021 年 8 月,Daltix 将一个包含 22 亿个对象的 120TB 的存储桶从 S3 的标准存储转移到 Backblaze B2 云存储。仅最初的迁移就立即节省了 2000 美元 / 月或 24000 美元 / 年的成本。


宁静的数据湖

三倍的数据,直接兼容 S3,累计节省 10 万美元


现在,Daltix 每天从 Amazon S3 向 Backblaze B2 迁移 320 万个数据对象(大约 160GB 的数据)。他们在 S3 中保存了 18 个月的热数据,一旦一个对象存在达 18 个月零一天,就会被归档到 B2 中。在少数情况下,Daltix 也会接收到请求 18 个月窗口期之外的数据的请求,由于 Backblaze 的 API 兼容 S3 且数据永远可用,所以他们可以直接将数据从 Backblaze B2 拉到 Amazon S3。


每日审计日志会汇总已传输的数据量,整个迁移过程每天自动执行。Orford 说:“它在后台运行,我们不需要管理任何东西,什么都可以看到,而且很划算。对我们来说,Backblaze B2 是一个理想的解决方案。”


随着每日数据收集量的增加,会有越来越多的数据从热存储窗口中迁出,Orford 预计成本会进一步降低。据 Orford 估计,日迁移量将在大约一年半后接近目前水平的三倍:这意味着 Daltix 每天将向 Backblaze B2 备份 900 万个对象(约 450GB 数据)。长远来看,从 Amazon S3 切换到 Backblaze B2 为 Daltix 节省的成本都令人难以置信。Orford 说:“因为使用了 Backblaze B2,预计到 2023 年,我们在存储支出上将累计节省 7.5 万至 10 万美元,每年至少节省 3 万美元。”


自己算算看


想知道每年多出 3 万美元能做什么吗?可以利用我们的云存储定价计算器,了解下迁移到 Backblaze B2 可以节省多少钱。


声明:本文为 InfoQ 翻译,未经许可禁止转载。


原文链接:https://www.backblaze.com/blog/an-ideal-solution-daltixs-automated-data-lake-archive-saves-100k/

2022-12-05 10:003545
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 600.7 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

最新资讯!《可观测性能力建设指南(2024年)》即将在2024可信云大会上发布!

乘云数字DataBuff

白皮书 可观测 信通院

首批通过 | 百度通过中国信通院H5端人脸识别安全能力评估工作

百度安全

2024年第二季度 DDoS 威胁趋势报告

网络安全服务

TCP udp DDoS Cloudflare DDoS 攻击

天谋科技连续获中国信通院认可,认定为时序数据库领航者厂商

Apache IoTDB

以Zookeeper为例 浅谈脑裂与奇数节点问题

数新网络官方账号

zookeeper

面试阿里,直呼太难了!

王中阳Go

Go 后端 面经

tuxera手动批准内核扩展 如何手动批准其内核扩展 Tuxera Ntfs for mac内核扩展批准不了怎么办

阿拉灯神丁

Mac 内核 磁盘管理 Tuxera NTFS2023\ Tuxera NTFS教程

直播预告丨如何抓住“数字经济发展红利”,重塑企业可持续竞争能力?

轶天下事

IoTDB 分段查询语句详解:GROUP BY + 时序语义

Apache IoTDB

AI与心理疗愈:探索心大陆的七大应用领域

心大陆多智能体

智能体 AI大模型 心理健康 数字心理

OpenAI 发布 GPT-4o mini;FasterLivePortrait 支持实时表情转移丨 RTE 开发者日报

声网

天谋科技连续获中国信通院认可,认定为时序数据库领航者厂商

Apache IoTDB

idm下载速度慢解决办法 idm批量导入下载使用方法 idm下载速度只有几百kb

阿拉灯神丁

网络 批量 加速器 IDM idm下载

2024火山引擎AI创新巡展:五城联动,解锁AI落地新密码

新消费日报

年中工作汇报必备的3个PPT网站推荐,办公效率直线上升!

彭宏豪95

人工智能 PPT 办公软件 AIGC AI生成PPT

Spark内核的设计原理

数新网络官方账号

spark Spark 源码

以工业互联网为支撑 低代码推动数字技术赋能新型工业化

不在线第一只蜗牛

低代码 数字化 工业互联网 制造业

数字揭秘丨AI 和结构优化技术让《星球大战》的帝国军队在恩多战役中转败为胜

Altair RapidMiner

人工智能 机器学习 仿真 altair

同样是人工智能 客户在哪儿AI和GPT等大模型有什么不同

客户在哪儿AI

ToB营销 ToB增长 大客户营销

找国内API,用哪家API平台?

幂简集成

API

使用观测云监控观测 AutoMQ 最佳实践

观测云

监控 AutoMQ

“理想解决方案”:Daltix的自动化数据湖归档节省了10万美元_大数据_Amrit Singh_InfoQ精选文章