2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

百度开源联邦学习框架 PaddleFL:简化大规模分布式集群部署

  • 2020-04-07
  • 本文字数:1978 字

    阅读完需:约 6 分钟

百度开源联邦学习框架 PaddleFL:简化大规模分布式集群部署

近两年,联邦学习技术发展迅速。作为分布式的机器学习范式,联邦学习能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,从技术上打破数据孤岛。但是,目前这一技术在很多企业落地遇到了困难,InfoQ 将通过选题的方式逐一揭开各大公司在联邦学习方面的探索。


为了让机器学习模型取得更好的效果,开发者往往希望获得更多数据训练模型,而有助于解决该问题的联邦学习受到了越来越多的关注。简单来说,联邦学习可以在不共享数据的前提下,利用双方数据实现模型优化,在数据隐私越来越重要的今天,联邦学习很好的平衡了隐私和数据利用之间的关系。正因如此,很多科技公司在联邦学习方向有所探索。


近日,百度宣布开源基于飞桨( PaddlePaddle) 开源框架的联邦学习框架 PaddleFL 。据了解,研究人员可以很轻松地用 PaddleFL 复现和比较不同的联邦学习算法;得益于飞桨在大规模并行训练方面的基础能力的积累,PaddleFL 可以帮助开发者快速实现在大规模分布式集群中部署联邦学习系统。对此,InfoQ 采访了百度深度学习研发工程师,为大家进一步剖析 PaddleFL 的技术原理和提供联邦学习部署的建议。

PaddleFL 为何而生?

众所周知,百度在 2016 年就开源了深度学习平台 PaddlePaddle,而为了帮助飞桨开发者快速调研一些联邦学习算法,作为底层编程框架支撑上层应用,PaddleFL 应运而生。


百度工程师表示,PaddleFL 为联邦学习研究人员提供了基础编程框架,并封装了一些公开的联邦学习数据集。针对横向联邦学习场景,PaddleFL 实现了多种不同的优化算法,举例来说 DP-SGD、Fed-Avg、Secure-Aggregate 都是在飞桨开源框架灵活的编程组件之上搭建的。此外,借助于飞桨丰富的模型库和预训练模型,研究人员也可以快速上手针对一些具体的垂直场景应用进行研究。



图 1


PaddleFL 整体的建设方向可以参考图 1,当前 PaddleFL 已经开源了完整的横向联邦学习能力,底层的编程模型采用飞桨训练框架,结合飞桨的参数服务器功能,PaddleFL 可以实现在 Kubernetes 集群中进行横向联邦学习系统的部署。值得一提的是,尽管横向联邦学习与传统的数据并行分布式训练原理一致,但在如何部署训练任务的方式上有一些区别:


1)横向联邦学习中,参与训练的各方数据格式可能不同,这需要框架能够支持不同类型数据读取器,并在同一套训练系统里运行。


2)横向联邦学习中的各方以及模型参数维护方可能处于不同的集群当中,很难通过一次统一的调度实现多方训练任务同时启动。


为此,PaddleFL 设计了编译期阶段,在编译期通过多方协商生成一个具有共识的网络配置,然后由 PaddleFL 自动拆分成多方集群需要运行的程序,大大简化部署过程,同时也开发了二次开发接口允许各方定义私有化的数据读取器。编译期和执行期的关系可以参考下图:



图 2


当前,PaddleFL 已经开源了横向联邦的场景,适合有相同类型任务的多个组织进行联合训练。针对云端提供计算资源,但用户不愿意上传原始数据的应用场景,PaddleFL 也开源了一套两方安全学习的方案。以图像分类为例,可以参考图 3,用户通过本地计算资源,利用图像的预训练模型的前几层进行图片原始数据的编码,云端接收客户端的编码以及对应的标签进行训练,这种模式在保护用户原始数据的情况下可以提供用户云端进行安全训练的能力。



图 3

PaddleFL 未来之路

据了解,在接下来的迭代中,飞桨将会开源纵向联邦学习编程框架,并在横向与纵向之间进行编程接口方面的统一。借助于飞桨训练框架的快速迭代,PaddleFL 在分布式训练的速度,跨地域的稀疏通信以及通信的稳定性方面都会得到稳步的提升。在应用层,PaddleFL 还将提供传统机器学习训练策略的应用,例如多任务学习、联邦学习环境下的迁移学习。基于飞桨丰富的模型库,PaddleFL 还将开放更多适合联邦学习的模型示例和部署教程,方便用户学习。


由于是基于飞桨开源框架的联邦学习框架,所以目前安装 PaddleFL 的时候会自动安装飞桨开源框架依赖,两者有绑定关系。建议开发者能够把 PaddleFL 当成底层编程框架,在上层封装出一些支撑垂直领域的平台,探索联邦学习的更多产品形态。

企业该如何部署联邦学习?

虽然我们已经可以看到联邦学习在一些实际业务场景中有了应用,但只能算是刚刚开始,这项技术目前还远远没有进入大规模落地的阶段,这样意味着存在大量的机会和挑战。


百度工程师表示,搭建一个方便易用的平台还是十分重要的,参与联邦训练的开发者不一定非要知道自己在采用联邦学习技术,平台能够让用户知道自己的数据很安全且不会泄露,以及业务的实际效果有提升,这才是最关键的。


目前来看,百度工程师补充道,面向 C 端用户的端上产品,落地联邦学习的可能性比较大,例如在手机的 app 端利用联邦学习为用户提供快速且安全的个性化能力就是一个典型的横向联邦学习场景。企业级的联邦学习,跨群组、跨分公司的联邦学习更容易成功,前提是有一个置信的、易用的联邦学习平台以及相关的政策法规做保障。


2020-04-07 10:593847
用户头像
赵钰莹 极客邦科技 总编辑

发布了 894 篇内容, 共 677.3 次阅读, 收获喜欢 2694 次。

关注

评论

发布
暂无评论
发现更多内容

如何合并K个有序链表

Skysper

算法

Service worker 的概念和用法

编程三昧

大前端 ServiceWorker

MySQL next-key lock 加锁范围总结

程序员小航

MySQL 索引 锁机制

百度Geek们教你怎样成为复盘高手

百度Geek说

【Vue2.x 源码学习】第七篇 - 阶段性梳理

Brave

源码 vue2 6月日更

独热编码&词向量

Qien Z.

nlp 6月日更 独热编码 词向量 句子向量

美团主办国际顶会ICCV 2021研讨会,食品视觉领域顶级挑战赛开启报名

科技热闻

Git使用

xujiangniao

不看绝对血亏!跳槽面试大厂被拒,2021最新版!

欢喜学安卓

android 程序员 面试 移动开发

企业管理软件开发新模式:抛开旧思维,轻松做系统

雯雯写代码

软件开发 企业管理

公安警情研判分析系统搭建,警情可视化指挥调度

云图说|OLAP开源引擎的一匹黑马,MRS集群组件之ClickHouse

华为云开发者联盟

Clickhouse MRS 华为云 云图说 OLAP开源引擎

我的程序员生涯(2)

胡途

程序员 职业生涯

【LeetCode】汉明距离Java题解

Albert

算法 LeetCode 6月日更

Chia奇亚挖矿app开发|系统搭建

開發I3O6O643Zq7

挖矿 #区块链# IPFS怎么挖矿 Chia奇亚挖矿

安卓内存监控悬浮窗,算法题+JVM,知识点总结+面试题解析

欢喜学安卓

android 程序员 面试 移动开发

上新!H3C Magic NX54双频5400M Wi-Fi 6路由器:549元

科技热闻

深度分享丨如何使用微细分仪打造金融场景下的战术级客户分群

索信达控股

大数据 金融科技 用户细分 客户数据平台 客户画像

APISIX2.6微服务网关入门

菠萝吹雪—Code

架构实战营

读深入ES6记[一]

蛋先生DX

ES6 6月日更

react源码解析8.render阶段

全栈潇晨

React react源码

Java 并发编程—— Exchanger

Antway

6月日更

双向链表,还能这么实现

实力程序员

Bzz云算力挖矿app开发,Bzz分币系统搭建

El Camino de Santiago

escray

6月日更

数仓建设之路(一)

undefined

【Flutter 专题】126 图解自定义两侧对齐 ACETabBar 标签导航栏

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 6月日更

分布式管理员zookeeper

卢卡多多

zookeeper CAP 6月日更

Go timer 是如何被调度的?

HHFCodeRv

Go 语言

阿里云,让「服务」成为一种先进生产力

ToB行业头条

云计算 阿里云

让JavaScript在WebAssembly上快速运行

代码先生

JIT webassembly WASI

百度开源联邦学习框架 PaddleFL:简化大规模分布式集群部署_开源_赵钰莹_InfoQ精选文章