写点什么

阿里巴巴 AAAI 2018 录用论文:将句法信息加入实体表示模型

  • 2018-01-09
  • 本文字数:1517 字

    阅读完需:约 5 分钟

论文名称:Syntax-aware Entity Embedding for Neural Relation Extraction(句法敏感的实体表示用于神经网络关系抽取)

团队名称:业务平台事业部

作者:何正球,陈文亮,张梅山,李正华,张伟,张民

摘要

句法敏感的实体表示用于神经网络关系抽取。关系抽取任务大规模应用的一个主要瓶颈就是语料的获取。近年来基于神经网络的关系抽取模型把句子表示到一个低维空间。这篇论文的创新在于把句法信息加入到实体的表示模型里。首先,基于 Tree-GRU,把实体上下文的依存树放入句子级别的表示。其次,利用句子间和句子内部的注意力,来获得含有目标实体的句子集合的表示。

研究背景和动机

关系抽取任务大规模应用的一个主要瓶颈就是语料的获取。远程监督模型通过将知识库应用于非结构化文本对齐来自动构建大规模训练数据,从而减轻对人工构建数据的依赖程度,并使得模型跨领域适应能力得到增强。然而,在利用远程监督构建语料的过程中,仅仅利用实体名称进行对齐,而不同实体在不同关系下应该具有更加丰富的多样的语义表示,从而导致错误标注等问题。因此,一套更加丰富的实体表示显得尤为重要。

另一方,基于语法信息的方法通常作用于两个实体之间的关系上,而语法信息是可以更加丰富实体的表示的。因此,本文基于句法上下文的实体表示来丰富实体在不同关系模式下的语义,并结合神经网络模型处理关系抽取任务。

相关工作介绍

我们把相关的工作大致分成早期基于远程监督的方法和近年来基于神经网络模型两类。

为了解决关系抽取任务严重依赖于标注语料的问题,Mintz et al.(2009) 率先提出了基于远程监督的方法构建标注语料。然而,这样构建的自动标注语料含有大量的噪声。为了缓解语料中噪声带来的影响,Riedel et al.(2010) 将关系抽取看成是一个多实例单类别的问题。进一步的,Hoffmann et al.(2011) 和 Surdeanu et al.(2012) 采取了多实例多类别的策略。同时,采用最短依存路径作为关系的一个语法特征。上述方法典型的缺陷在于模型的性能依赖于特征模板的设计。

近年来,神经网络被广泛的应用于自然语言处理任务上。在关系抽取领域,Socher et al.(2012) 采用循环神经网络来处理关系抽取。Zeng et al.(2014) 则构建了端到端的卷积神经网络,进一步的,Zeng et al.(2015) 假设多实例中至少有一个实例正确地表示了相应的关系。相比于假设有一个实例表示一对实体的关系,Lin et al.(2016) 通过注意力机制挑选正面的实例更充分的使用了标注语料含有的信息。

以上这些基于神经网络的方法大多数都使用词层次的表示来生成句子的向量表示。另一方面,基于语法信息的表示也受到了众多研究者的青睐,其中最主要的即最短依存路径 (Miwa and Bansal(2016) 和 Cai et al.(2016))。

主要方法

首先,基于依存句法树,利用基于树结构的循环神经网络(Tree-GRU)模型生成实体在句子级别的表示。如上图所示,有别于仅仅使用实体本身,我们能够更好地表达出长距离的信息。具体的实体语义表示如下图所示。我们使用Tree-GRU 来获得实体的语义表示。

其次,利用基于子节点的注意力机制(ATTCE,上图)和基于句子级别的实体表示注意力机制(ATTEE,下图) 来减轻句法错误和错误标注的负面影响。

实验结果

本文在NYT 语料上进行了实验。最终结果如上图所示。其中,SEE-CAT 和SEE-TRAINS 分别是本文使用的两种结合三种向量表示(句子的向量表示,两个实体的向量表示)的策略。从图中可以看出,本文提出的模型在相同数据集上取得了比现有远程监督关系抽取模型更好的性能。

总结

本文的实验结果表明,更丰富的命名实体语义表示能够有效地帮助到最终的关系抽取任务。

如果您也有论文被 AAAI录用或者对论文编译整理工作感兴趣,欢迎关注AI前线(ai-front),在后台留下联系方式,我们将与您联系,并进行更多交流!

2018-01-09 17:222960

评论

发布
暂无评论
发现更多内容

业务数据清洗,落地实现方案

数据 数据清洗 数据管理 数据服务 业务数据

推动产业创新,腾讯的底层逻辑是什么?

ToB行业头条

让脂肪起内讧?从内部全面瓦解脂肪

脑极体

初识Java反射概念和使用

CRMEB

墨天轮国产数据库沙龙 | 黄新著:金仓数据库全生命周期管控

墨天轮

国产数据库 KingBase 人大金仓

你以为委派模式很神秘,其实你每天都在用

Tom弹架构

Java 架构 设计模式

IOS技术分享| WebRTC iOS源码下载&编译

anyRTC开发者

ios 音视频 WebRTC 实时通信 视频直播

springboot集成阿里云短信

小鲍侃java

11月日更

如何获取所有安装的应用程序信息

Changing Lin

11月日更

极光笔记丨Spark SQL 在极光的建设实践

极光GPTBots-极光推送

大数据 spark 计算引擎

一文,动态规划入门

bigsai

算法 动态规划

《Linux一学就会》:第二章:Linux基本命令操作和文件管理

侠盗安全

Linux 运维 linux运维 云计算架构师

低代码是什么意思?

低代码小观

程序员 低代码 开发工具 开发平台 企业开发系统

什么是DISA STIG?概述+STIG安全

旋极智能

技术干货|开源项目-FlyFish使用攻略

云智慧AIOps社区

开源 大前端 低代码 数据可视化 大屏

原来我才是内卷王,闭关3个月肝完Java 7大核心知识,成功斩获字节58万Offer。

Java高级开发

字节跳动 java; 字节跳动面经

JavaIO流核心模块与基本原理

Java nio IO流 字符流 字节流

个人信息保护法生效,企业数据安全合规正当时

行云管家

信息安全 数据安全 企业安全 网络保护

腾讯安全李滨:腾讯云数据安全与隐私保护探索与实践

腾讯安全云鼎实验室

数据安全 云安全

真香!180页100+题15W+字解析的《Java高级面试指南》,果断收下

Java 程序员 架构 分布式 算法

为什么那么多人在用WGCLOUD

王逅逅

zabbix 监控系统 linux运维 运维系统

内在可解释模型之RuleFit

索信达控股

机器学习 算法 模型

Apache APISIX 扩展指南

API7.ai 技术团队

Apache 插件 API网关 Apache APISIX

OceanBase 源码解读(六):存储引擎详解

OceanBase 数据库

数据库 开发者 高性能 资源隔离 租户

白码低代码/无代码开发平台功能及作用

低代码小观

低代码 开发工具 开发平台 无代码 企业服务

行云管家荣登36kr企服点评云计算软件排行榜NO.1

行云管家

云计算 软件 排行榜 IT运维

恒源云(GPUSHARE)_Child Tuning: 反向传播版的Dropout

恒源云

深度学习

百度人脸活体检测系统通过信通院“护脸计划”首批优秀级安全防护能力评估

百度开发者中心

安全 人脸识别 百度安全

11.11上云嘉年华,华为云数据库助力客户备战业务高峰

华为云数据库小助手

GaussDB GaussDB(for openGauss) GaussDB ( for Redis ) 华为云数据库

入职字节跳动那一天,我哭了(蘑菇街被裁,奋战7个月拿下offer)

Java MySQL redis 程序员 算法

“神算子”上线!EasyDL时序预测模型零门槛轻松上手

百度开发者中心

百度飞桨

阿里巴巴AAAI 2018录用论文:将句法信息加入实体表示模型_阿里巴巴_阿里巴巴业务平台事业部_InfoQ精选文章