金融科技复合型人才缺口持续扩大,企业如何实现内部人才“活水”? 了解详情
写点什么

Amazon SageMaker Processing – 完全托管的数据处理和模型评估

  • 2019-12-11
  • 本文字数:3057 字

    阅读完需:约 10 分钟

Amazon SageMaker Processing – 完全托管的数据处理和模型评估

今天,我们非常高兴地推出 Amazon SageMaker Processing,这是 Amazon SageMaker 的一项新功能,可让您轻松地在完全托管的基础设施上运行预处理、后处理和模型评估工作负载。


训练准确的机器学习 (ML) 模型需要许多不同的步骤,但没有什么比预处理数据集更重要,例如:


  • 将数据集转换为您所使用的 ML 算法期望的输入格式,

  • 将现有功能转换为更具表现力的表示形式,例如一键编码分类功能,

  • 重新调整或归一化数值特征,

  • 设计高级功能,例如用 GPS 坐标替换邮寄地址,

  • 为自然语言处理应用程序清理和标记文本,

  • 等等!


这些任务包括在数据集上运行定制脚本(我被告知在没有月亮的天空下),并保存处理后的版本,以供以后的培训作业使用。如您所料,对 ML 团队来说,手动运行它们或必须构建和扩展自动化工具的前景并不令人兴奋。对于后处理作业(筛选、整理等)和模型评估作业(针对不同测试集对模型评分)而言,也是如此。


为解决此问题,我们构建了 Amazon SageMaker Processing。下面我来进行更多介绍。


Amazon SageMaker Processing 简介


Amazon SageMaker Processing 推出了新的 Python 开发工具包,使数据科学家和 ML 工程师可以轻松地在 Amazon SageMaker 上运行预处理、后处理和模型评估工作负载。


该开发工具包使用 SageMaker 的内置容器来进行scikit-learn,这可能是最受欢迎的数据集转换库之一。


如果您还需要其他工具,还可以使用自己的 Docker 映像,而不必遵循任何 Docker 映像规范:这为您提供了最大的灵活性,无论是在 SageMaker Processing 还是在 Amazon ECSAmazon Elastic Kubernetes Service 之类的 AWS 容器服务上,甚至在内部,均是如此。


用 scikit-learn 快速演示怎么样? 然后,我将简要讨论如何使用您自己的容器。当然,您可以在 Github 上找到完整的示例。


使用内置的 Scikit-Learn 容器预处理数据


以下是使用 SageMaker Processing 开发工具包来运行 scikit-learn 作业的方法。


首先,让我们创建一个 SKLearnProcessor 对象,传递要使用的 scikit-learn 版本以及对托管基础设施的要求。


Python


from sagemaker.sklearn.processing import SKLearnProcessorsklearn_processor = SKLearnProcessor(framework_version='0.20.0',                                     role=role,                                     instance_count=1,                                     instance_type='ml.m5.xlarge')
复制代码


然后,我们可以像下面这样,运行预处理脚本(稍后将介绍更多有关该操作的内容):


  • 数据集 (dataset.csv) 将自动复制到目标目录 (/input) 下的容器内。如果需要,我们会添加其他输入。

  • 这是 Python 脚本 (preprocessing.py) 读取它的位置。我们也可以将命令行参数传递给脚本。

  • 脚本对命令行进行预处理,将其分为三种方式,然后将文件保存在容器中的 /opt/ml/processing/output/train/opt/ml/processing/output/validation/opt/ml/processing/output/test 下。

  • 作业完成后,所有输出将自动复制到 S3 中的默认 SageMaker 存储桶。


Python


from sagemaker.processing import ProcessingInput, ProcessingOutputsklearn_processor.run(    code='preprocessing.py',    # arguments = ['arg1', 'arg2'],    inputs=[ProcessingInput(        source='dataset.csv',        destination='/opt/ml/processing/input')],    outputs=[ProcessingOutput(source='/opt/ml/processing/output/train'),        ProcessingOutput(source='/opt/ml/processing/output/validation'),        ProcessingOutput(source='/opt/ml/processing/output/test')])
复制代码


就这么简单! 让我们通过查看预处理脚本的框架将所有内容放在一起。


Python


import pandas as pdfrom sklearn.model_selection import train_test_split# Read data locally df = pd.read_csv('/opt/ml/processing/input/dataset.csv')# Preprocess the data setdownsampled = apply_mad_data_science_skills(df)# Split data set into training, validation, and testtrain, test = train_test_split(downsampled, test_size=0.2)train, validation = train_test_split(train, test_size=0.2)# Create local output directoriestry:    os.makedirs('/opt/ml/processing/output/train')    os.makedirs('/opt/ml/processing/output/validation')    os.makedirs('/opt/ml/processing/output/test')except:    pass# Save data locallytrain.to_csv("/opt/ml/processing/output/train/train.csv")validation.to_csv("/opt/ml/processing/output/validation/validation.csv")test.to_csv("/opt/ml/processing/output/test/test.csv")print('Finished running processing job')
复制代码


快速浏览 S3 存储桶,确认文件已成功处理并保存。现在,我可以将它们直接用作 SageMaker 培训作业的输入。


$ aws s3 ls --recursive s3://sagemaker-us-west-2-123456789012/sagemaker-scikit-learn-2019-11-20-13-57-17-805/output


2019-11-20 15:03:22 19967 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/test.csv


2019-11-20 15:03:22 64998 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/train.csv


2019-11-20 15:03:22 18058 sagemaker-scikit-learn-2019-11-20-13-57-17-805/output/validation.csv


现在如何使用自己的容器?


使用自己的容器处理数据


比如说您想使用热门的 spaCy 库预处理文本数据。您可以使用以下方法为其定义一个普通 Docker 容器。


Bash


FROM python:3.7-slim-buster# Install spaCy, pandas, and an english language model for spaCy.RUN pip3 install spacy==2.2.2 && pip3 install pandas==0.25.3RUN python3 -m spacy download en_core_web_md# Make sure python doesn't buffer stdout so we get logs ASAP.ENV PYTHONUNBUFFERED=TRUEENTRYPOINT ["python3"]
复制代码


然后,您可以构建 Docker 容器,在本地进行测试,然后将其推送到我们的托管 Docker 注册表服务 Amazon Elastic Container Registry


下一步,可以使用 ScriptProcessor 对象配置处理作业,并传递您已构建和推送的容器的名称。


Python


from sagemaker.processing import ScriptProcessorscript_processor = ScriptProcessor(image_uri='123456789012.dkr.ecr.us-west-2.amazonaws.com/sagemaker-spacy-container:latest',                role=role,                instance_count=1,                instance_type='ml.m5.xlarge')
复制代码


最后,您可以像前面的示例一样运行该作业。


Python


script_processor.run(code='spacy_script.py',    inputs=[ProcessingInput(        source='dataset.csv',        destination='/opt/ml/processing/input_data')],    outputs=[ProcessingOutput(source='/opt/ml/processing/processed_data')],    arguments=['tokenizer', 'lemmatizer', 'pos-tagger'])
复制代码


其余过程与上述过程完全相同:将输入复制到容器内部,将输出从容器复制到 S3


很简单,对不对? 同样,我专注的是预处理,但是您可以运行类似的任务进行后处理和模型评估。不要忘记查看 Github 中的示例。


现已推出!


Amazon SageMaker Processing 现已在提供 Amazon SageMaker 的所有商业区域中推出。


请试一试,并通过 Amazon SageMakerAWS 论坛或您常用的 AWS Support 联系方式向我们发送反馈。


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/amazon-sagemaker-processing-fully-managed-data-processing-and-model-evaluation/


2019-12-11 15:35632

评论

发布
暂无评论
发现更多内容

如何实现 iOS 短视频跨页面的无痕续播?

阿里云视频云

ios 阿里云 Video播放器 视频云

阿里菜鸟+腾讯IEG面经(阿里5面,腾讯8面)无限秽土转生

Java 程序员 架构 面试 计算机

爬虫初探: 重定向处理与新闻明细页解析

程序员架构进阶

Python 实战问题 9月日更 spider

理解RESTful API

林十二XII

大奖花落谁家,TDSQL他来了

腾讯云数据库

数据库 tdsql

TDSQL多集群下的自动化和交付

腾讯云数据库

数据库 tdsql

多线程环境下,程序运行真是危机四伏

Java 架构 面试 后端 多线程

TDSQL交付要求和挑战: 快速、灵活、安全

腾讯云数据库

数据库 tdsql

JVM专题01-类加载机制详解

JustRunning

javacore JVM 深入理解JVM Java类加载

深入理解 Linux 的 epoll 机制及epoll原理

Linux服务器开发

网络编程 epoll Linux服务器开发 IO多路复用 Linux后台开发

在云中确保安全的五个技巧

浪潮云

云计算

拯救你的算法!GitHub上神仙项目手把手带你刷算法,Star数已破110k

Java 编程 架构 面试 程序人生

云原生架构下的持续交付实践

百度Geek说

架构 云原生 后端

Flutter 多引擎支持 PlatformView 以及线程合并解决方案

字节跳动终端技术

字节跳动 大前端 跨平台 火山引擎

Vue进阶(幺幺幺):实现浏览器全屏

No Silver Bullet

Vue 9月日更

无敌!肝完这套Alibaba面试全能小册,百万年薪在向你招手!

Java 阿里巴巴 编程 面试 程序人生

高能预警!Alibaba最新出版的JDK源码剖析手册(究极奥义版)开源

Java 程序员 架构 面试 Alibaba

腾讯云分布式数据库TDSQL的十年自主可控之路

腾讯云数据库

数据库 tdsql

T-TDSQL的典型应用

腾讯云数据库

数据库 tdsql

使用PaddleNLP打造精准文献检索系统,看万方系统升级放大招!

百度大脑

人工智能 nlp 飞桨

工信部整治平台网址屏蔽问题,打击互联网行业垄断任重道远

石头IT视角

T-TDSQL的核心理念,为数据赋能

腾讯云数据库

数据库 tdsql

拓路前行-TDSQL追求极致体验的这一路

腾讯云数据库

数据库 tdsql

T-TDSQL的核心技术

腾讯云数据库

数据库 tdsql

跟着我乔鲁诺学面试(大误)

姬翔

9月日更

挑战进阶教程,和MindSpore更近一步!

Geek_6cdeb6

mindspore

什么是CPython

林十二XII

TDSQL自动交付方案: 全球灵活部署,最快9分钟

腾讯云数据库

数据库 tdsql

12年技术老兵整理的Alibaba“MySQL 学习笔记”带你轻松拿捏MySQL

Java 编程 架构 面试 程序人生

TDSQL原创技术的出发点

腾讯云数据库

数据库 tdsql

自助售货机主板要注意哪几个方面?

双赞工控

安卓主板

Amazon SageMaker Processing – 完全托管的数据处理和模型评估_行业深度_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章