2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

通过 Apache MXNet,为您的自动驾驶车辆应用行为克隆技术

  • 2019-11-05
  • 本文字数:3561 字

    阅读完需:约 12 分钟

通过 Apache MXNet,为您的自动驾驶车辆应用行为克隆技术

在我们无人驾驶车辆系列的第一篇博客文章中,您制作了一辆 Donkey 车并将导航服务器部署到了 Amazon EC2 实例上。在第二篇博客文章中,您学习了如何驾驶 Donkey 车辆,Donkey 车辆也学习了如何自行驾驶。在第三篇博客文章中,您学习了如何通过 AWS IoT 将 Donkey 车辆的遥测数据流式传输到 AWS 的过程。


在这篇博文中,我们将深入探讨实现车辆自行驾驶的深度学习框架,并介绍采用卷积神经网络 (CNN) 的行为克隆概念。CNN 是一项面向计算机视觉任务的先进建模技术,可帮助解答车辆可能会遇到的问题,例如,“我前面是轨道还是圆锥形路标?”




  1. 在 AWS 上制造一辆无人驾驶车辆,并参加 re:Invent 机器人车拉力赛

  2. 《制作无人驾驶车辆》第 2 部分:驾驶您的车辆

  3. 《制作无人驾驶车辆》第 3 部分:连接您的无人驾驶车辆

  4. 《制作无人驾驶车辆》第 4 部分:通过 Apache MXNet,为您的自动驾驶车辆应用行为克隆技术



P2 上的 Donkey 训练数据设置

我们已在博客文章 2 中详细演练了如何运行训练。但是,让我们在这里回顾一下关键步骤和命令:


  1. 将数据从 Pi 复制到 Amazon EC2 实例:

  2. Bash


   $ rsync -rva --progress -e "ssh -i /path/to/key/DonkeyKP-us-east-1.pem" /home/pi/d2// ec2-user@ec2-your-ip.compute-1.amazonaws.com:~/d2/data/
复制代码


  1. 启动训练过程:

  2. Bash


   $ python ~/d2/manage.py train --model /path/to/myfirstpilot
复制代码


  1. 将训练过的模型复制回 Pi:

  2. Bash


   $: rsync -rva --progress -e "ssh -i /path/to/key/DonkeyKP-us-east-1.pem" ec2-user@ec2-your-ip.compute-1.amazonaws.com:~/d2/models/ /home/pi/d2/models/
复制代码

模型幕后

在本部分中,我将讨论模型学习的内容以及它如何能够自行驾驶。目前制作的 Donkey 车辆使用 Keras 作为其默认的深度学习框架。AWS 正在添加面向 Apache MXNet、Gluon 和 PyTorch 等其他框架的支持。在这篇博文中,我们将使用 Apache MXNet 来深入分析实现自动驾驶的模型的内部工作原理。如前所述,我们使用名为行为克隆的技术来实现车辆的自动驾驶。基本上,此模型基于训练数据学习驾驶,而训练数据则是通过环绕轨道行驶收集而来的。保证大部分数据都很“干净”非常重要,也就是说,假定我们的目标始终未偏离轨道,那么训练数据中车辆脱离轨道或转弯错误的图像就不会太多。就像驾驶员控制方向盘,保证车辆在车道上行驶一样,我们将制作一个会根据当前场景确定转向角的模型,引导我们将问题模型化为“根据输入图像,我们需要采用哪种转向角?”。实际驾驶情况更复杂,因为涉及到了加速和变速齿轮等更多组件。为了简单起见,我们在开始的时候先把油门固定到某个百分比,然后再让车辆行驶。在实践中我们发现,对于备用训练数据,25-30% 的油门已被证明是 Donkey 车辆的最佳行驶速度。


为实现这一目标,我们将使用名为卷积神经网络 (CNN) 的深度学习技术。CNN 已成为面向计算机视觉问题的实际网络。CNN 由多个卷积层组成,其中每个节点都与一个名为感受野的小窗口关联。这可以让我们提取图像中的局部特征。像“图像中是否有轨道或人?”这样的问题就可以通过使用先前计算出来的这些局部特征进行计算。您可以在此处找到有关 CNN 工作原理的详细说明。

数据集

在这篇博文中我将使用一个数据集,这个数据集是车辆环绕轨道行驶大约 15 分钟收集来的。如前所述,我们会先过滤一下,将车辆明显不在轨道上的图像丢弃。Donkey 软件已经提供了一个基于浏览器的 UI,用来删除“坏”的图像 (命令:


donkey tubclean <包含 Tub 的文件夹>)。与此类似的、车辆在轨道上行驶的图像数据集可在此处获取


制作 CNN 模型

通过 im2rec.py 工具,我们将图像数据集转换为二进制文件,以便提高处理速度。要了解有关 Apache MXNet 内部工作原理的更多信息,请参阅教程页面。


Bash


import mxnet as mximport numpy as np
data = mx.symbol.Variable(name="data")
body = mx.sym.Convolution(data=data, num_filter=24, kernel=(5, 5), stride=(2,2)) body = mx.sym.Activation(data=body, act_type='relu', name='relu1')body = mx.symbol.Pooling(data=body, kernel=(2, 2), stride=(2,2), pool_type='max')
body = mx.sym.Convolution(data=body, num_filter=32, kernel=(5, 5), stride=(2,2))body = mx.sym.Activation(data=body, act_type='relu')body = mx.symbol.Pooling(data=body, kernel=(2, 2), stride=(2,2), pool_type='max')
flatten = mx.symbol.Flatten(data=body)
body = mx.symbol.FullyConnected(data=flatten, name='fc0', num_hidden=32)body = mx.sym.Activation(data=body, act_type='relu', name='relu6')body = mx.sym.Dropout(data=body, p=0.1)
body = mx.symbol.FullyConnected(data=body, name='fc1', num_hidden=16)body = mx.sym.Activation(data=body, act_type='relu', name='relu7')
out = mx.symbol.FullyConnected(data=body, name='fc2', num_hidden=1)out = mx.symbol.LinearRegressionOutput(data=out, name="softmax")
复制代码


考虑到我们需要确定车辆的转向角,我们将使用单输出的线性回归输出层。为评估训练过程执行的进度如何,我们可以使用平均绝对误差 (MAE) 作为评估指标。由于不同角度之间的距离在 Euclidean 系统中是可以判断的,因而 MAE 对于优化损失来说是一个不错的指标。

训练模型

我们的 S3 存储桶中提供了可以在训练中使用的二进制文件。


Bash


# Get Iterators
def get_iterators(batch_size, data_shape=(3, 120, 160)): train = mx.io.ImageRecordIter( path_imgrec = 'train.rec', data_name = 'data', label_name = 'softmax_label', batch_size = batch_size, data_shape = data_shape, shuffle = True, rand_crop = True, rand_mirror = True) val = mx.io.ImageRecordIter( path_imgrec = 'valid.rec', data_name = 'data', label_name = 'softmax_label', batch_size = batch_size, data_shape = data_shape, rand_crop = False, rand_mirror = False) return (train, val)
batch_size = 16train_iter, val_iter = get_iterators(batch_size)
#Training
batch_size = 8num_gpus = 1num_epoch = 10mod = mx.mod.Module(out, context=[mx.gpu(i) for i in range(num_gpus)])mod.fit(train_data=train_iter, eval_data=val_iter, eval_metric='mae', optimizer='adam', optimizer_params={'learning_rate': 0.0001}, num_epoch=num_epoch, batch_end_callback = mx.callback.Speedometer(batch_size, 100), )
复制代码

评估和模拟器

现在,我们已经训练完模型,可以将它部署在车辆上进行试驾。我们的验证集中的 MAE 错误很少,说明我们对模型的训练和泛化效果不错。但是,如果我们能在部署之前就从视觉上了解车辆将会如何行驶,那就太棒了。为实现这一点,我将使用模拟器来查看车辆会如何在轨道上行驶。


Bash


import os  import time%matplotlib inlinefrom IPython import displayimport matplotlib.patches as patches
PATH = 'trainingdata/'all_files = sorted(os.listdir(PATH))sym, arg_params, aux_params = mx.model.load_checkpoint('my-car', num_epoch)mod = mx.mod.Module(symbol=sym) fig, ax = plt.subplots(1)for fname in all_files: org_img = Image.open(PATH + fname) img = np.array(org_img) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) img = img[np.newaxis, :] mod.forward(Batch(data=[mx.nd.array(img)])) exp = mod.get_outputs()[0].asnumpy()[0] angle = 180*exp left = 80 * exp + 80 rect = patches.Rectangle((left, 85),20,30, angle=angle, linewidth=2,edgecolor='r',facecolor='none') patch = ax.add_patch(rect) display.clear_output(wait=True) display.display(plt.gcf()) plt.imshow(org_img) time.sleep(0.1) patch.remove()
复制代码


结论

我们的无人驾驶车辆系列到此结束。我们期待在 re:Invent 2017 年机器人车拉力赛上与您相遇,这是一场有关深度学习、无人驾驶车辆以及 Amazon AI 和 IoT 服务方面亲身体验的、为期两天的黑客马拉松赛。我们鼓励您继续完成以下 Donkey 车辆并加入社区


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/building-an-autonomous-vehicle-part-4-using-behavioral-cloning-with-apache-mxnet-for-your-self-driving-car/


2019-11-05 08:00681

评论

发布
暂无评论
发现更多内容

微服务架构下,DLI的部署和运维有何奥秘?

华为云开发者联盟

Docker 大数据 Serverless 数据湖 DLI

炒股不要看K线图(分享最近学习投资的一点心得)

Nick

投资 理财

温故知新——Spring AOP(二)

牛初九

spring aop ioc

“全球+”浪潮下,企业出海选择合适的“技术船舶”成关键

华为云开发者联盟

网络 华为云 企业出海 网络加速 宽带

云原生技术采用增加,全球60%后端开发人员都在使用容器 | 趋势分享

BoCloud博云

云计算 容器 云原生 PaaS 博云

莱卡、宾利都在用,英特尔oneAPI渲染工具带来高质量视觉体验

E科讯

新金融分布式架构之SOFAStack解决方案

阿里云金融线TAM SRE专家服务团队

不得不了解系列之限流

梦朝思夕

限流

【写作群星榜】8.15~8.28 写作平台优秀作者 & 文章排名

InfoQ写作社区官方

写作平台 排行榜 热门活动

从6大应用场景,看边缘计算落地生根

BoCloud博云

容器 边缘计算 PaaS 云平台 博云

MySQL redo与undo日志解析

Simon

MySQL Redo MySQL日志

华为云会议的前世今生

华为云开发者联盟

直播 云服务 华为云 视频编码 视频会议

GitMaster 更新v1.9.0,支持Gitea,Gist拥抱黑暗模式

neo

gitlab tree gitee GitHub、

GrowingIO AWS 成本优化之路

GrowingIO技术专栏

AWS 成本优化

oeasy教您玩转linux010106这儿都有啥 ls

o

柔性电子拥有改变地球的能力吗?

脑极体

有为而治:平衡吞噬世界的系统之熵

IT民工大叔

屏幕共享接入指南

anyRTC开发者

WebRTC 在线教育 直播 RTC

币期权DAPP 8月28日全球同步耀世上线,掀起币圈追捧热潮

InfoQ_967a83c6d0d7

LeetCode题解:155.最小栈,使用两个栈,详细注释

Lee Chen

大前端 LeetCode

分享一个阿里云轻量级开源前端图编排,流程图js组件——butterfly-dag

InfoQ_39ba186c207f

Java 流程图 flow canvas html/css

数据挖掘学习指南(转载)

Jackchang234987

数据挖掘 产品经理

开发者的福音,LR.NET模块化代码生成器

Philips

敏捷开发 快速开发 模块化流程 代码质量 .net core

CRM企业到底该不该做PaaS?

ToB行业头条

PaaS SaaS CRM

硬核科技:莱克立式吸尘器,引领家居清洁“新态度”

InfoQ_967a83c6d0d7

全民加速节:动态加速在在线教育应用上的最佳实践

阿里云Edge Plus

在线教育 CDN

软件开发丨关于软件重构的灵魂四问

华为云开发者联盟

软件 开发者 软件开发 代码 软件重构

学习Python真的能找到工作吗?

代码制造者

Python 程序员 编程语言 低代码 零代码

我也没想到 Springboot + Flowable 开发工作流会这么简单

程序员小富

java 14

ShardingSphere简介+实战

云淡风轻

ShardingJDBC

mPaaS 客户端证书错误避坑指南

阿里云金融线TAM SRE专家服务团队

通过 Apache MXNet,为您的自动驾驶车辆应用行为克隆技术_其他_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章