写点什么

用“一袋子词”进行情感分析

  • 2016-02-03
  • 本文字数:3350 字

    阅读完需:约 11 分钟

很久以来,主流 NLP (Natural Language Processing)就在这样的一袋子词里面做文章,有时候也确实做出了蛮漂亮的文章,都是用的基于统计的机器学习。什么是“一袋子词”呢?

NLP 的对象是自然语言文本(speech 不论),具体说来,根据任务的不同,这个对象是语料库(corpus)、文章(document)或帖子(post),都是有上下文(discourse)的 text,作为 NLP 系统的输入。对于输入的 text,首先是断词(tokenization)。断词以后,有两条路可走,一条路是一句一句去做句法结构分析(parsing),另一条路就是这一袋子词的分析,又叫基于关键词(keywords)的分析。所以,一袋子词是相对于语言结构(linguistic structure)而言的。换句话说,一袋子词就是要绕过句法,把输入文字打散成词,然后通过统计模型,来完成指定的语言处理任务。(科学网,立委科普)

一袋子词(bag-of-words)模型在主题分类上做得很好,但是一旦涉及到情感分类,就不是很精确了。Bo Pang 和 Lillian Lee 在 2002 年的电影评论情感分析研究中,精确度才达到 69%。要是用 3 种常用的文本分析分类器(Naive Bayes、Maximum Entropy、Support Vector Machines),精确度能达到大约 80%(取决于采用的 feature)。

那么为什么还要用“一袋子词”模型呢?原因就在于可以帮助我们更好地理解文本内容,并且帮助我们为 3 个常用分类器选择 feature。Naive Bayes 模型也是基于“一袋子词”模型的,所以“一袋子词”模型可以作为一个中间步骤。

数据收集

Ahmet Taspinar 是一名数据科学家、软件工程师,同时也在攻读应用物理学。针对“一袋子词”的情感分析,他进行了一个实验。在他的实验中,他用著名的 Python 爬虫工具—BeautifulSoup,从亚马逊网站上爬取了大量的图书评论。在总共的 213335 本图书评论中随机选了 8 本书的评论。

然后,他针对这 8 本书的不同打分,做了一个柱状分布图。从图中可以看到,分布变化趋势还是挺明显的,平均分以上的书,几乎没有 1 分的,远差于平均水平的书,不同等级的评分具有独特的分布趋势。

我们能看到,“Gone Girl”的评分分布趋势很漂亮,所以比较适合我们的数据训练;而“Unbroken”、“The Martian”这两本书,1 分的评分量都不太够,所以用于训练“差评”不是很合适。

建立“一袋子词”模型

下一步,Ahmet Taspinar 将评论语料数据分成“训练数据集”和“测试数据集”。“Gone Girl”大概有 40000 个评论,所以他用最多一半的评论来训练,用剩下一半评论来测试模型。为了考虑到训练数据集大小对模型精确度产生的效应,他还会将训练数据集的大小从 1000 条评论到 20000 条评论之间来回变换。

“一袋子词”模型是 NLP 中最简单的语言模型之一。它通过追踪每个词的出现次数来建立文本的一元语法模型(Unigram Model),然后它可以用作文本分类器的 feature。在“一袋子词”模型中,你只能考虑单个的一些词,然后给每个词赋予一个特定的主观性得分。这个主观性得分可在情感词汇中查到。如果总分比较低,那么该文本就是“差评”,反之亦然。“一袋子词”很容易做,但是不够精确,因为它没有考虑词的顺序或者语法。简单的改进就是把一元语法模型和二元语法模型(Bigram Model)结合起来用,即不要在诸如“not”、“no”、“very”、“just”等词语后面断句。这样很好实现,但却有意想不到的效果。如果不把一元模型和二元模型结合,仅仅用一元模型,“This book is not good”就会判为“好评”,“This book is very good”和“This book is good”的评分就会一样。

建立“一袋子词”的伪代码如下所示:

复制代码
list_BOW = []
For each review in the training set:
Strip the newline charachter “\n” at the end of each review.
Place a space before and after each of the following characters: .,()[]:;” (This prevents sentences like “I like this book.It is engaging” being interpreted as [“I”, “like”, “this”, “book.It”, “is”, “engaging”].)
Tokenize the text by splitting it on spaces.
Remove tokens which consist of only a space, empty string or punctuation marks.
Append the tokens to list_BOW.
list_BOW now contains all words occuring in the training set.
Place list_BOW in a Python Counter element. This counter now contains all occuring words together with their frequencies. Its entries can be sorted with the most_common() method.

制作情感词汇

现实问题是,我们怎么通过判断每个词的情感 / 主观得分来判断整个文本的情感 / 主观得分呢?的确,我们可以使用一些开源的词汇库,但是我们不知道这些词汇是在何种状态下、出于何种目的建立起来的。而且,绝大多数的词汇都被分成两类:要么好评、要么差评。

如果用训练数据集的一些统计指标来判断每一个词的主观得分,可能会好一些。为了这样做,Ahmet Taspinar 判断了”一袋子词“中每一个词出现的类概率。这可以通过使用 Panda Dataframe 作为 datacontainer(但只能用 dictionary 或者其他的数据格式来做)。代码如下:

复制代码
from sets import Set
import pandas as pd
BOW_df = pd.DataFrame(0, columns=scores, index='')
words_set = Set()
for review in training_set:
score = review['score']
text = review['review_text']
splitted_text = split_text(text)
for word in splitted_text:
if word not in words_set:
words_set.add(word)
BOW_df.loc[word] = [0,0,0,0,0]
BOW_df.ix[word][score] += 1
else:
BOW_df.ix[word][score] += 1

这里 split_text 是用于将一句话拆分成单个词的列表的方法:

复制代码
def expand_around_chars(text, characters):
for char in characters:
text = text.replace(char, " "+char+" ")
return text
def split_text(text):
text = strip_quotations_newline(text)
text = expand_around_chars(text, '".,()[]{}:;')
splitted_text = text.split(" ")
cleaned_text = [x for x in splitted_text if len(x)>1]
text_lowercase = [x.lower() for x in cleaned_text]
return text_lowercase

输出结果为一个包含了每种类型每个单词出现次数的数据列表:

我们可以看到,还是有一些词只出现了一次。这些词在它们出现的这个类里,类概率是 100%。这种分布根本就不能真实反映实际的类分布状况。因此,对于定义一些“出现的临界值”还是不够好;出现次数少于这个值的单词不被列入考虑范围内。

通过用“一行中每个单词出现次数”除以“一行中所有词出现次数之和”,Ahmet Taspinar 得到了一个数据表,这个表包含了每种类型每个单词的相对出现次数。例如:每个单词的类概率图。做完这些后,class 1 中概率最高的单词被认为是“差评”的,class 5 中概率最高的单词被认为是“好评”的。

由此,我们可以从训练数据集中构建情感词汇,并用于衡量测试数据集中的评论主观性。随着训练数据集的大小不同,情感词汇也变得越来越精确了。

判断评论的主观性

通过将“4 star”和“5 star”标记为“好评”,“1 star”和“2 star”标记为“差评”,“3 star”标记为“中立”,并结合下图所示的“好评词”和“差评词”,我们可以使用“一袋子词”模型来判断一个评论究竟是“好评”还是“差评”了,并且精确度能达到 60% 以上。

展望

“一袋子词”通过绕过句法,把输入文字打散成词,然后使用统计模型完成基于关键词的分析。它可以帮助我们更好地理解文本内容,包括使用常用分类器来进行情感分析时,也是必不可少的关键步骤。那么展望未来,使用“一袋子词”来进行情感分析还有以下问题需要解决:

  • 使用从 A 书的评论中建立的好评和差评词语,来判断 B 书评论的主观倾向性,其精确度有多高呢?
  • 有太多词语本身没有正面或负面的意思,但却容易让人觉得有正面或负面的主观倾向,这些词只有结合上下文才能更好地理解。如果我们考虑二元语法模型(Bigram Model),甚至三元语法模型(Trigram Model),“一袋子词”的精确程度又能提高多少呢?
  • 从所有书籍的所有评论中提取情感词汇全集,有没有可能实现?
  • 使用“一袋子词”来作为三种常用分类器(Naive Bayes、Maximum Entropy 和 Support Vector Machines)的 feature。
2016-02-03 20:004329

评论

发布
暂无评论
发现更多内容

【FAQ】关于JavaScript版本的华为地图服务Map的点击事件与Marker的点击事件存在冲突的解决方案

HarmonyOS SDK

HMS Core

阿里新一代微服务,内部大佬手抄的笔记+脑图不容错过,全是精华

Java 架构 微服务 Spring Cloud Aliababa

逆天!腾讯大神纯手撸“架构师速成手册”Github狂获4.5kstar

Java你猿哥

Java 架构 ssm 架构设计 架构师

运维报表有哪些内容?有什么用?

行云管家

运维 报表 IT运维 容器化部署

聊聊 Zookeeper 的 4lw 与信息安全

明哥的IT随笔

zookeeper 数据安全

YARN 远程代码执行(RCE)安全漏洞问题分析与解决方案

明哥的IT随笔

大数据 YARN 数据安全 RCE

Spring Boot 整合 Redis 基于 Stream 消息队列 实现异步秒杀下单

ChatGPT 会在三年内终结编程吗?| 社区征文

神木鼎

三周年征文

Apifox WebSocket 调试功能你会用了吗?

Apifox

程序员 接口 websocket API API 调试

蚂蚁安全科技 Nydus 镜像加速实践

SOFAStack

开源 镜像 镜像安全 OCI Nydus

Spring Boot 整合 Redis 基于 Stream 消息队列 实现异步秒杀下单

Java你猿哥

Java redis stream ssm 消息队列

与全球开发者创新共赢,全球首个“开发者村” 正式落成

极客天地

阿里技术官神作!大厂亿级流量性能调优学习手册,堪称保姆级教学

Java 性能优化 性能调优

合合信息新推出反光消除技术,助力手写文字识别更精准

合合技术团队

人工智能 文字识别 扫描全能王 反光去除

人脸活体检测初识

六月的雨在InfoQ

人脸活体检测 三周年连更 人脸数据库 人脸辨识度

亿级日活业务稳如磐石,华为云CodeArts PerfTest发布

华为云开发者联盟

云计算 后端 华为云 华为云开发者联盟 企业号 4 月 PK 榜

阿里限量的性能调优+微服务+高并发设计,真的太香了!

Java 微服务架构 系统设计 性能调优 亿级并发

算法题每日一练: 青蛙跳台阶

知心宝贝

数据结构 算法 前端 后端 三周年连更

一文详解多模态认知智能

华为云开发者联盟

人工智能 华为云 AIGC 华为云开发者联盟 企业号 4 月 PK 榜

本铯智能科技是家怎样的共享电动车厂家?

共享电单车厂家

共享电动车厂家 共享电单车厂商 本铯智能科技 本铯智能电动车厂家

那些关于DIP器件不得不说的坑

华秋PCB

插件 DIP 元器件 PCB PCB设计

从此脱离CRUD!Github热榜第三架构师速成手册成功颠覆了我的认知

Java你猿哥

架构 ssm 架构设计 架构师 微服务实战

区块链基础设施 NFTScan 新增支持 Aptos 网络

NFT Research

区块链+ NFT

聊聊 IP packet 的 TTL 与 tcp segment 的 MSL

明哥的IT随笔

TCP/IP TTL MSL

从源码全面解析LinkedBlockingQueue的来龙去脉

Apache Flink ML 2.2.0 发布公告

阿里云大数据AI技术

大数据 算法 企业号 4 月 PK 榜

HashData认证云原生数据仓库管理工程师培训报名开启!

酷克数据HashData

裸辞底气!GitHub飙升“java面试笔记2023” 了解下八股文天花板

Java你猿哥

Java 面试 Spring Boot ssm 八股文

ByteHouse云数仓版查询性能优化和MySQL生态完善

NineData

数据库 架构 字节跳动 Clickhouse bytehouse

堡垒机英文是什么?有哪些品牌?

行云管家

网络安全 堡垒机

读书笔记丨远程服务调用和RESTful,如何分析和抉择?

华为云开发者联盟

开发 华为云 华为云开发者联盟 企业号 4 月 PK 榜 远程服务调用

用“一袋子词”进行情感分析_语言 & 开发_董志南_InfoQ精选文章