2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

更高性能表现,一文解读高精度计算数据类型 DecimalV3

  • 2023-02-02
    北京
  • 本文字数:3788 字

    阅读完需:约 12 分钟

更高性能表现,一文解读高精度计算数据类型 DecimalV3

数值运算是数据库中十分常见的需求,例如计算数量、重量、价格等,为了适应多样化运算场景,数据库系统通常支持精准的数字类型和近似的数字类型,当我们需要精确地表示小数并计算小数时,通常会考虑使用 Decimal 数据类型。区别于浮点小数,Decimal 作为定点小数类型,可以支持高精度的小数运算,因此适用于各种高精度计算的场景,常见的应用场景有以下几种:


  • 金融行业:在金融交易中经常涉及到小数,比如利息、金额的计算,金融场景对数字准确的要求极高,因此精确的小数运算是必要的。

  • 财务软件:财务软件通常需要进行复杂的财务计算,Decimal 类型可以提供精确的小数计算,避免计算过程中产生的舍入误差。

  • 科学计算、工程计算等其他场景。

DecimalV3 功能介绍


Apache Doris 1.2.1 之前的版本中,我们已对 Decimal(precision, scale)(precision<=27) 数据类型进行了支持,随着 Apache Doris 用户的持续增长,银行、证券、基金等金融领域的用户也随之快速增长,对高精度的小数计算场景也提出了更高的要求,旧的 Decimal 数据类型已无法满足。因此,我们在 Apache Doris 1.2.1 推出了精度更高、速度更快的 DecimalV3(precision, scale)(precision<=38),实现了真正意义上的高精度定点数,相比于老版本中的 Decimal ,DecimalV3 有以下核心优势:


  1. 可表示范围更大。DECIMALV3 对 Precision 和 Scale 的取值范围进行扩充。

  2. 内存占用更低,性能更高。老版本的 Decimal 需要占用 16 Bytes 的内存,而 DecimalV3 对内存可进行自适应调整,如下所示。


+----------------------+-------------------+|     precision        | 占用空间(内存/磁盘)|+----------------------+-------------------+| 0 < precision <= 8   |      4 bytes      |+----------------------+-------------------+| 8 < precision <= 18  |      8 bytes      |+----------------------+-------------------+| 18 < precision <= 38 |     16 bytes      |+----------------------+-------------------+
复制代码


  1. 更完备的精度推演。

精度推演规则


DECIMALV3 有一套很复杂的类型推演规则,针对不同的表达式,会应用不同规则进行精度推演,下面来介绍一下推演规则:


  1. 四则运算


  • 加法 / 减法:DECIMALV3(a, b) + DECIMALV3(x, y) -> DECIMALV3(max(a - b, x - y) + max(b, y), max(b, y)),即整数部分和小数部分都分别使用两个操作数中较大的值。

  • 乘法:DECIMALV3(a, b) * DECIMALV3(x, y) -> DECIMALV3(a + x, b + y)

  • 除法:DECIMALV3(a, b) / DECIMALV3(x, y) -> DECIMALV3(a + y, b)


  1. 聚合运算


  • SUM / MULTI_DISTINCT_SUM:SUM(DECIMALV3(a, b)) -> DECIMALV3(38, b)。

  • AVG:AVG(DECIMALV3(a, b)) -> DECIMALV3(38, max(b, 4))(鉴于每个系统 AVG 的精度不同,且不同用户对精度的需求也不一样,经调研,决定选择与 SQLServer 相同的策略,因此选择“4”既能保证较好的性能,也不会有较大的精度损失。)


  1. 默认规则


除上述提到的函数外,其余表达式都使用默认规则进行精度推演。即对于表达式 expr(DECIMALV3(a, b)),结果类型同样也是 DECIMALV3(a, b)。

结果精度调整


上述几种规则为当前 Doris 的默认行为,而不同场景对 DECIMALV3 的精度要求各不相同,远超出以上几种规则。当用户有不同的精度需求,可以通过以下方式进行精度调整


  • 当期望的结果精度大于默认精度时,可通过调整入参精度来调整结果精度。例如用户期望计算AVG(col)得到 DECIMALV3(x, y)作为结果,其中col的类型为 DECIMALV3(a, b),则可以改写表达式为AVG(CAST(col as DECIMALV3(x, y)))

  • 当期望的结果精度小于默认精度时,可通过对输出结果求近似得到想要的精度。例如用户期望计算AVG(col)得到 DECIMALV3(x, y)作为结果,其中col的类型为 DECIMALV3(a, b),则可以改写表达式为ROUND(AVG(col), y)

使用演示


这里我们采用 Bitcoin 的数据集对 DecimalV3 进行演示。


Bitcoin 的数据集部分示例如下:


  • Unix - 时间戳

  • Date - 时间

  • Symbol - 时间序列数据所指代的交易品种

  • Open - 该时间段的开盘价

  • High - 该时间段的最高价

  • Low - 该时间段的最低价

  • Close - 该时间段的收盘价

  • Volume BTC - BTC 金额

  • Volume USD - USD 金额



以下是在 Doris 中的建表存储数据,其中小数的列分别用 DecimalV3 进行存储:


CREATE TABLE `btc` (  `unix` bigint(20) NOT NULL,  `date` datetime NULL,  `symbol` varchar(30) NULL,  `open` decimalv3(8, 2) NULL,  `high` decimalv3(8, 2) NULL,  `low` decimalv3(8, 2) NULL,  `close` decimalv3(7, 2) NULL,  `Volume_BTC` decimalv3(10, 8) NULL,  `Volume_USD` decimalv3(38, 30) NULL) ENGINE=OLAPDUPLICATE KEY(`unix`)COMMENT 'OLAP'DISTRIBUTED BY HASH(`unix`) BUCKETS 4PROPERTIES ("replication_allocation" = "tag.location.default: 1");
复制代码


我们来计算一下 2022 年 1 月 1 日这一天的平均 Volume_BTC/Volume_USD 以及总的 Volume_BTC/Volume_USD:


mysql> select avg(Volume_BTC),avg(Volume_USD),sum(Volume_BTC),sum(Volume_USD) from btc where to_date(date)='2022-01-01';+-------------------+--------------------------------------+-------------------+-----------------------------------------+| avg(`Volume_BTC`) | avg(`Volume_USD`)                    | sum(`Volume_BTC`) | sum(`Volume_USD`)                       |+-------------------+--------------------------------------+-------------------+-----------------------------------------+|        0.51494486 | 24236.665942788256243957638888888888 |      741.52060313 | 34900798.957615088991299000000000000000 |+-------------------+--------------------------------------+-------------------+-----------------------------------------+
复制代码


通过 SQL 的执行结果可以看到,通过 DecimalV3,在 Volume_USD 这一列的平均结果和总和上,实现了保留 30 位的小数。而旧的 Decimal 类型在这个例子中只能实现保留不超过 20 位。

性能对比


我们采用 TPC-H Benchmark 100G 来对比 DecimalV3 与老版本 Decimal 的执行速度、存储占用、内存占用等性能。


我们在两个库分别对新版 DecimalV3 和老版本 Decimal 进行建表。建表完成如下:


tpch1 库为 DecimalV3



tpch2 库为老版本 Decimal


执行速度

采用 TPC-H Benchmark 对执行速度进行测试:


SQL Q1


select /*+SET_VAR(exec_mem_limit=8589934592, parallel_fragment_exec_instance_num=16, enable_vectorized_engine=true, batch_size=4096, disable_join_reorder=false, enable_cost_based_join_reorder=false, enable_projection=false) */    l_returnflag,    l_linestatus,    sum(l_quantity) as sum_qty,    sum(l_extendedprice) as sum_base_price,    sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,    sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,    avg(l_quantity) as avg_qty,    avg(l_extendedprice) as avg_price,    avg(l_discount) as avg_disc,    count(*) as count_orderfrom    lineitemwhere    l_shipdate <= date '1998-12-01' - interval '90' daygroup by    l_returnflag,    l_linestatusorder by    l_returnflag,    l_linestatus;
复制代码


tpch1 库(DecimalV3)的 SQL 执行结果为 6.38s



tpch2 库(老版本 Decimal)的 SQL 执行结果为 8.13s



SQL Q1 所查询的表是上述展示字段的表 Lineitem,我们可以看到在 DecimalV3 的情况下,查询 速度较老版本有 27.4% 的提升。

存储占用


tpch1 库(DecimalV3)的 Lineitem 表的存储占用为 18.475GB



tpch2 库(老版本 Decimal)的 Lineitem 表的存储占用为 20.893GB



可以看到在有四个字段由 Decimal 改为 DecimalV3 的情况下,存储占用有 13.1%的降低。

内存占用


内存占用测试我们同样使用 Lineitem 表,采用自己改写的一条 SQL


select count(*) from (   select l_quantity,l_extendedprice,l_discount,l_tax     from lineitem     where l_shipdate < '1995-01-01'     group by l_quantity,l_extendedprice,l_discount,l_tax)tmp;
复制代码


下图的 Grafana 监控中可以看到执行测试前的 Doris 内存稳定为 12.2GB



分别在两个库执行上述 SQL



在 tpch1 库(DecimalV3)下执行,内存占用峰值为 26.6GB



内存回落正常后,在 tpch2 库(老版本 Decimal)下执行,内存占用峰值为 30.8GB



从上方三张图中可以看到,这条 SQL 在 DecimalV3 的情况下不仅内存占用降低了 15.8%,执行时间也缩短了 10s。

总结


Apache Doris 1.2.1 版本推出的 DecimalV3 实现了更高的精度,更高的性能,更完备的精度推演,使得 Doris 更加适用于金融财务、科学计算等有精确计算需求的应用场景,结合 Apache Doris 强大的分析计算性能,给相关用户及行业提供了更准确、完善的数据服务。


接下来,社区还将实现 JDBC 外表对 DecimalV3 类型的支持,JDBC Catalog 可以通过标准 JDBC 协议,连接其他数据源,连接后 Doris 会自动同步数据源下的 Database 和 Table 的元数据,以便快速访问这些外部数据。基于 JDBC 的通用性,结合 Apache Doris 的 高性能分析能力,实现对各类数据库数据联邦查询的高精度计算。


作者介绍:


钟永康,SelectDB 生态研发工程师

李文强,SelectDB 数据库内核研发工程师,Apache Doris Committer

2023-02-02 10:495564

评论

发布
暂无评论
发现更多内容

兴业+民生上岸面试经验分享

暖蓝笔记

3月程序媛福利 3月月更

《人民日报》刊文:天翼云持续创新为数据安全保驾护航

天翼云开发者社区

无影云电脑支持企业快速实现居家办公

阿里云弹性计算

远程办公 数据安全 无影云电脑

确保数据中心物理安全的五种方法

Ethereal

千字带你了解什么是 RPC 协议

踏雪痕

RPC 3月程序媛福利 3月月更

持续集成容器篇:Docker与自动化打包

Docker 架构 持续集成 jenkins 持续交付

创建 Node.js 视频流应用之后端

devpoint

node.js Video Express 3月月更

对微博系统中“微博评论”的高性能高可用计算架构的一点思考

晨亮

「架构实战营」

拥抱国产云桌面,焱融科技与酷栈科技完成产品兼容认证

焱融科技

云计算 分布式 云原生 高性能 文件存储

flask POST请求,数据入库,文件上传,一文看懂,3天掌握Flask开发项目系列博客之三

梦想橡皮擦

3月月更

欧拉的奇异之旅·共赴开源时代

白洞计划

天翼云联手平凯星辰共建开源分布式数据库实验室

天翼云开发者社区

东数西算加快云网与数据融合天翼云架起云间高速

天翼云开发者社区

每秒百万条信息查询天翼云助力江苏核酸检测信息查询

天翼云开发者社区

云原生网络利器--Cilium 之 eBPF 篇

Daocloud 道客

云原生 ebpf cilium

终端常用快捷键

刁架构

终端 快捷键 iterm2

使用基于 WebRTC 的 JavaScript API 在浏览器环境里调用本机摄像头

汪子熙

JavaScript 前端 WebRTC 摄像头 3月月更

融云 IM +RTC 重磅优惠上线!15 天免费体验,1 年服务买一赠一

融云 RongCloud

作业五

Geek_f3e842

架构实战营

向工程腐化开炮|资源治理

阿里巴巴终端技术

Java android 资源管理

阿里云神龙AI加速引擎帮助vivo将训练性能提升30%-70%

阿里云弹性计算

AI gpu 神龙架构 加速引擎

智能家居市场白热化,小程序助力生态合作新模式

Speedoooo

小程序生态 智慧小区 小程序容器 智慧家居 智慧物业

CVE-2022-22947 远程代码执行漏洞复现分析

网络安全学海

黑客 网络安全 信息安全 渗透测试 WEB安全

Python 递归函数返回值为 None 的解决办法

AlwaysBeta

Python 递归

WMS系统与ERP仓储管理的差异

源字节1号

开源 后端 前端开发 WMS系统 ERP系统

如何在 Python 中反转字符串?

Ethereal

如何设计良好的技术项目文档结构

老张

项目管理 交付质量

聊聊 Pulsar:编译 Pulsar 源码并搭建源码环境

老周聊架构

云原生 Apache Pulsar 3月月更

在线MySQL,SQL Server建表语句生成JSON测试数据工具

入门小站

工具

如何捕获和分析 JavaScript Error

喀拉峻

前端

融云获 CSDN 技术影响力之星评选「年度技术品牌奖」

融云 RongCloud

更高性能表现,一文解读高精度计算数据类型 DecimalV3_语言 & 开发_SelectDB_InfoQ精选文章