AICon 上海站|日程100%上线,解锁Al未来! 了解详情
写点什么

Bonree ONE 技术实践:如何用 5 台机器资源支撑起 2000 探针同时起跑?

  • 2024-01-25
    北京
  • 本文字数:2237 字

    阅读完需:约 7 分钟

大小:1.15M时长:06:40
Bonree ONE技术实践:如何用5台机器资源支撑起2000探针同时起跑?

背景


日志、指标和调用链是可观测性取得成功的三要素,而这些的实现离不开数据采集,探针采集并上报数据,后端服务接收后对数据进行处理分析,从而达到可观测的目的。通常,服务器性能数据、服务相关数据、服务之间的调用等数据经由探针采集上报,经过 ETL 处理后,成为可观测性分析中的重要依据。

 


探针采集的数据量大小依赖两个要素:


  • 采样率:采样率越高,数据量越大,对应可观测性分析会更加全面。

  • 业务调用量:当业务服务调用频率越高, 相应的数据量越大,对应可观测性分析会更加复杂。

2000 探针难在哪儿?


由于私有化部署资源有限,需要尽可能多的满足企业监控需求,因此博睿数据的内部测试会以 5 台机器的集群作为部署标准,在资源固定的前提条件下,随着探针量的增多,主要难点如下:


  • 业务场景存在峰值波动,高峰期的服务调用是低峰期的 2 倍+

  • 业务数据是多种业务场景同时存储,常见的涉及调用链数据、指标数据、服务快照数据等

  • 5 台机器是混合部署多种服务,比如数据接入的 controller 服务、报警服务、业务查询服务、数据调用链存储、数据快照存储、数据指标存储、消息中间件等,在更大数据量写入的情况下,针对 CPU、内存、磁盘 IO 的消耗都是抢占式的,影响服务的稳定性。

如何优化瘦身?


针对以上难点,首先想到的就是瘦身,即降低服务组件的数量,减少服务资源抢占的情况。其次是业务存储迁移,弃用高消耗组件,使用低消耗组件满足业务需求。最后在合理的数据存储方案的前提下,优化存储服务本身的性能,满足业务查询稳定性。

降低组件数量


hadoop 存储套装节点数据量比较多,而且是 java 服务,资源消耗较大,内存需求较大。hadoop 的主要业务方是 AI 服务,AI 团队基于自研的数据处理框架,打造了全新一代的 swiftAI 服务,组件种类只有 1 个,部署服务最少只需要 2 个。


业务存储优化


当前 APM 业务的存储分为三大块:指标数据、调用链和快照。目前主要使用三种不同的存储系统分别来支撑,指标数据存储在 clickhouse、调用链使用 ES,快照数据存储在自研的对象存储系统中。在实际的业务场景中,会交叉访问多种存储引擎,在资源估算时,没有一个合理的尺度来衡量资源的上下界。在单台机器上,如果部署多种存储引擎,势必会对服务稳定性产生影响,所以,减少 APM 业务的存储组件,成为一个可行性较高的方案。


探针调用链数据基于 ES 来存储,有以下痛点:


  • 调用链数据与关联的快照数据写入时机存在不一致,基于 ES 的数据写入存在延迟。

  • ES 消耗资源较大,在 CPU 和 IO 上消耗较多,影响其他服务稳定性。

  • ES 的查询效率不稳定,随着数据量越来越大,甚至出现无法查询出数据的问题。


探针调用链快照数据基于对象存储系统来存储,有以下痛点:


  • 写入不稳定,存在毛刺。

  • 对 cpu 和 IO 消耗较大,容易触达瓶颈。


针对以上两个组件的明显痛点,迁移数据到 clickhouse 进行存储,获益如下:


  • 调用链数据和关联的快照数据同时写入 clickhouse,保证关联数据的一致性。

  • clickhouse 写入稳定,即使是针对挽回数据,资源消耗较小。

  • clickhouse 读取稳定,clickhouse 支持查询熔断、资源限制等手段,提高 clickhouse 查询稳定性。

  • 基于合理的攒批策略,clickhouse 整体资源消耗平稳,毛刺点波动很小。


存储服务优化


相关的业务存储进行了聚焦,那么势必会对 clickhouse 服务产生影响, clickhouse 服务的优化以及运维监控就显得更加重要。


在优化方面,我们从以下三个方向着手:


服务参数调优


  • max_bytes_before_external_group_by:通过维度聚合查询时,当 RAM 消耗超过这个阈值, GROUP BY 会把多余的临时数据输出到文件系统并在磁盘进行处理计算,通常会建议配置成当前服务内存的 80%。

  • max_bytes_before_external_sort:涉及数据排序时,当 RAM 消耗超过这个阈值,ORDER BY 会把多余的临时数据输出到文件系统并在磁盘进行排序计算,通常会建议配置成当前服务内存的 80%。

  • max_memory_usage:用户单条查询可以使用的最大内存,通常会建议配置成当前服务内存的 80%。

  • max_execution_time:单条查询可以执行的最长时间,这个根据业务响应时间的上限来定。


物化视图、索引、projection 的合理使用


针对不同的场景,使用不同的加速手段,解决查询效率的问题。


  • 高频查询要充分利用主键索引。

  • 主键索引满足不了的高频查询,借助索引来加速。

  • 涉及排序操作,利用 projection 和物化视图来加速,优先使用 projection。

  • 无法使用 projection 的场景,使用物化视图。


监控、容错的支持


为了解决多业务接入带来的复杂影响,需要对集群有充分的监控,且在容错性上需要考虑更多因素。


  • 监控首要跟踪的监控是写入和读取两个方向,比如每分钟写入量,写入耗时、查询 QPS 等,针对特定敏感业务可以个性化跟踪。针对节点本身的状态信息进行监控,比如服务负载、merge 任务数、parts 数量等,这些指标可以及时发现服务的稳定性风险。针对集群的均衡性进行监控,比如 parts 数据同步的延迟时间、各个节点的查询均衡性、各个节点的写入均衡性等,避免集群倾斜。

  • 容错性写入节点单节点异常,不影响整体服务写入。clickhouse 单节点异常,不影响整体集群的写入也不影响读取。


效果


  • AI 组件瘦身

 


  • 调用链等相关数据迁移到 CK



ES+对象存储

CK

节省比例

cpu

118.58C

27.2C

77.07%

内存

629.12G

65.4G

89.61%

存储

59.072T

28.97T

50.96%


总结


为了实现 5 台集群可以支持到 2000 探针,我们首先要做的就是减法,减少组件之间的影响,让单个组件可以发挥更大的效能。再围绕这个组件,构建更全面的生态,包括监控、运维和操作等入口。最后在围绕业务使用场景进行深入优化,保证整体服务稳定性。


后续我们会在 clickhouse 内核上深入发力,不断拓展 clickhouse 的使用场景,与开发者一起分享博睿数据在 clickhouse 方向的探索和实践,助力 Bonree ONE 在更快、更准、更稳定的方向上走得更远。

2024-01-25 15:086250

评论

发布
暂无评论
发现更多内容

深入探析MySQL数据库:优势、版本与发展全面解读

小魏写代码

玩转数据处理利器:学会使用 YAML 文件轻松处理数据

霍格沃兹测试开发学社

一览2023 Web3 风云录

TechubNews

web3 香港Web3

【年后跳槽必看篇-非广告】Kafka核心知识点-第二章

派大星

Java 面试

基于PAI-EAS一键部署Stable Diffusion AIGC绘画

阿里云大数据AI技术

为什么选择 NineData 作为 MongoDB 的最佳拍档?

NineData

mongodb NineData MongoDB 数据库管理工具 MongoDB数据库

融云全球通信网的「最后一公里体验」之战

融云 RongCloud

别再因为React、Vue吵了,真的毫无新意!

伤感汤姆布利柏

谷歌 2024 新年目标曝光:一边做地表最强 AI,一边裁更多员工丨 RTE 开发者日报 Vol.132

声网

千万级高性能长连接Go服务架构实践

百度Geek说

golang 架构 高并发 长连接 企业号 1 月 PK 榜

测试管理进阶 | 如何打造一份出彩的工作汇报!

测试人

软件测试 测试 自动化测试 测试开发 测试管理

解析Java Chassis 3中应用视角的配置管理

华为云开发者联盟

Java 微服务 开发 华为云 华为云开发者联盟

第37期 | GPTSecurity周报

云起无垠

光纤的连接

小齐写代码

微服务的拆分规范和原则

伤感汤姆布利柏

全国独家线下面授 | 上海 · 大规模敏捷认证LeSS实践者课程3月14-16日火热报名

ShineScrum

大规模敏捷 LeSS认证 CLP认证 LeSS认证实践者

华为云低代码问答——低代码为什么这么“香”

华为云PaaS服务小智

低代码 华为云

【教程】混淆Dart 代码

实战Arthas:常见命令与最佳实践

Java随想录

Java 工具 Arthas 线上问题排查

LiveVideoStack人物专访:深耕多媒体二十载,他怎么看未来的视频云?

阿里云CloudImagine

云计算 视频云 多媒体

一个很热的国产低代码开发平台

2D3D前端可视化开发

物联网 低代码开发平台 数字孪生 前端设计 可视化开发

动态规划-序列比对-Smith-Waterman

alexgaoyh

Java 动态规划 编辑距离 序列比对 Smith-Waterman

传统企业和数字化企业的关系及优劣势

天津汇柏科技有限公司

数字化转型 企业数字化

请谨慎选择工作offer

老张

面试 求职面试 offer大厂

奖金 30 万!OurBMC 开源大赛等你来战

OurBMC

开放原子大赛 BMC全栈技术 ourBMC 飞腾服务器故障诊断

【第七在线】智能商品计划:让供应链管理更加智能、高效

第七在线

Linux 中常用的基础命令

emanjusaka

bash Linux command

Bonree ONE技术实践:如何用5台机器资源支撑起2000探针同时起跑?_可观测_冬青_InfoQ精选文章