写点什么

如何整合 RI 续购日期

  • 2019-09-29
  • 本文字数:2416 字

    阅读完需:约 8 分钟

如何整合RI续购日期

需求背景

看过以前四篇文章的介绍,作为一个云平台的管理人员,我想你应该非常熟悉如何做年度的 EC2 实例优化了,那么下面你一定会根据优化结果开始准备购买下一年的 RI 了。但是在很多企业中,由于的历史原因,并不是所有的 RI 都是在同一天购买的,也就是说,RI 的到期日分布在不同的月份和不同的日子,这样一批一批的购买是不是很繁琐呢?你也许会脑洞大开的想,我能不能选择日期临近的 RI 合并一起购买呢?这样就可以通过逐步减少购买 RI 的批次从而逐步增加每个批次的数量,合并以后可以省去很多麻烦。


但是选择在哪一天集中购买会更加经济呢?仔细想想,并不是每天的成本都是一样的。我们举个例子,你有 30 个 EC2 instance,最早过期日和最晚过期相差 2 个月,一共有 6 个批次。那么究竟选择哪一天集中购买最划算呢?

方案概述

要计算出哪一天购买最划算,我们需要分析一下我们所做决定的成本构成:


假设我们选择在第 X 天购买,对于任何一个 EC2, 在整个批次的 RI 购买周期内(从最早 RI 到期日至最晚 RI 到期日)有以下三部分成本:


  1. 原有机型 RI 的成本,


假设原有的 RI 在第 Y 天到期,如果在第 X 天购买新的 RI,则浪费了:


(X-Y)* 原有机型 RI 每日成本


如果 X-Y<=0, 则这部分成本为 0


2.新机型 RI 的成本


(RI 购买周期-X)*新机型 RI 每日成本


如果(RI 购买周期-X)<=0,则这部分成本为 0


3.On-Demand 成本


假设原有机型 RI 在第 Y 天到期,而我们在第 X 天购买了新机型的 RI,则从第 Y 天到第 X 天会以 On-Demand 的价格收取原有机型的费用


(Y-X)*原有机型 On-Demand 每日价格


如果 Y-X<=0, 则这部分成本为 0


我们要做的就是将每台 EC2 的这三部分成本加起来,选择一个合适的日子,使这三部分的成本之和最小。


我们使用第三篇文章介绍的优化方法生产的优化结果文件作为输入,输入的 Excel 的每条记录需要包含如下信息:


ri_expired_datetarget_pricesource_pricesource_ondemand


ri_experied_date:源系统 EC2 RI 的到期日(日期类型)


target_price:目标 EC2 的一年标准 RI 实例价格


source _price:源 EC2 的一年标准 RI 实例价格


source _ondemand:源 EC2 的 On-Demand 实例价格(每小时)


示例输入文件的格式如下:



上面的结果显示总计有 52 台服务器,原来分了 7 个批次购买 RI,最早到期日是 5 月 21 日,最晚到期日是 6 月 12 日。我们要计算的是如果这 52 台服务器今年一起购买 RI,那么在哪一天购买最划算?


下面这个 Python 程序(ri_plan.py)就是根据上述方案阐述的思路编写的,可以很好地解决这个问题。


import pandas as pd
from datetime import *
from datetime import date
from datetime import datetime

table = pd.read_excel("blog5_output.xlsx")
start_day = min(table['ri_expired_date']).date()
end_day = max(table['ri_expired_date']).date()
duration = (end_day - start_day).days
total_item = table.shape[0]
cost = []
for x in range(0, duration + 1):
sub_total = 0
for i in range(0, total_item):
current_item_date = (table.loc[[i]].ri_expired_date)[i].date()
# old price duration
op_day = ((current_item_date - start_day).days) - x
# on demand price duration
od_day = x - ((current_item_date - start_day).days)
# new price duration
np_day = (duration - x)
if op_day < 0:
op_day = 0
if od_day < 0:
od_day = 0
sub_total += ((table.loc[[i]].source_price)[i] / 365 * op_day + (table.loc[[i]].target_price)[i] / 365 * np_day + (table.loc[[i]].source_ondemand) * od_day * 24)[i]
cost.append(sub_total)
optimize_cost = min(cost)

print("{} {}".format(' Date', ' Cost'))
for i in range(0, len(cost)):
if cost[i] == optimize_cost:
recommand_date = start_day + timedelta(days=i)
current_date = start_day + timedelta(days=i)
current_date = datetime.combine(current_date, datetime.min.time())
print("{} {:.2f}".format(current_date.strftime('%Y-%m-%d'), cost[i]))
print ('\nRecommanded date to buy RI is {}'.format(recommand_date))
复制代码


运行后的结果如下:


$ python ri_plan.py    Date       Cost2019-05-21   135170.432019-05-22   129999.902019-05-23   124917.962019-05-24   119982.302019-05-25   115046.642019-05-26   110110.982019-05-27   105175.322019-05-28   100239.652019-05-29   102823.482019-05-30   105407.302019-05-31   107991.122019-06-01   110574.952019-06-02   113158.772019-06-03   115742.592019-06-04   118326.422019-06-05   127722.572019-06-06   137703.242019-06-07   147683.912019-06-08   157664.582019-06-09   167645.262019-06-10   177625.932019-06-11   187606.602019-06-12   197587.27 Recommended date to buy RI is 2019-05-28 
复制代码


从上述运行结果可以看出,5 月 28 日购买 RI 是最好的选择。


本文中的完整程序可从这里下载:


https://github.com/shaneliuyx/awscnprice/tree/master/examples


————


如何自动化的选择和优化EC2系列(一)利用AWS Price List API生成中国区的EC2 价格表


如何自动化的选择和优化EC2系列(二)在迁移项目中,如何自动选择最经济的EC2


如何自动化的选择和优化EC2系列(三)如何进行EC2优化,进一步优化成本


如何自动化的选择和优化EC2系列(四)如何为SAP应用选择合适的EC2


如何自动化的选择和优化EC2系列(五)如何整合RI续购日期(本博文)


作者介绍:


刘育新


AWS ProServe 团队高级顾问,长期从事企业客户入云解决方案的制定和项目的实施工作。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/how-to-use-ec2-combine-ri-date-seriesfive/


2019-09-29 16:30978
用户头像

发布了 1968 篇内容, 共 169.5 次阅读, 收获喜欢 83 次。

关注

评论

发布
暂无评论
发现更多内容

新手小白花几个月勇敢裸辞转行网络安全

网络安全学海

网络安全 信息安全 转行 渗透测试 安全漏洞

03- 面向复杂度的架构设计

Lane

模块四作业

Mr.He

架构实战营

华为大佬的“百万级”MySQL笔记,基础+优化+架构一键搞定

Java~~~

Java MySQL 数据库 面试 架构师

安全世界观 | 常见WEB安全问题及防御策略汇总

架构精进之路

安全 8月日更

模块四作业

秀聪

架构训练营

04-可扩展架构

Lane

腾讯技术官手撸笔记,全新演绎“Kafka部署实战”,已开源

Java~~~

Java MySQL 面试 MQ 架构师

其实,这就是「幸存者偏差」

非著名程序员

提升认知 认知提升 个人提升 8月日更

06-高可用复杂度

Lane

毕业感想

薛定谔的指南针

架构实战营

三维旋转笔记:欧拉角/四元数/旋转矩阵/轴角-记忆点整理

zhoulujun

矩阵旋转 欧拉角 三维旋转 四元数

手撸二叉树之二叉树中第二小的节点

HelloWorld杰少

数据结构与算法 8月日更

记录一次基于Qt的内存数据修改工具开发

星河寒水

qt 内存数据修改 Cheat Engine

Java架构速成笔记:七大专题,1425页考点,挑战P8岗

Java~~~

Java spring 面试 微服务 架构师

微信朋友圈的高性能复杂度分析

Saber

架构实战营

JavaScript 开发人员应该理解的 this

devpoint

JavaScript js变量声明 this 8月日更

设计千万级学生管理系统的考试试卷存储方案-模块四

小牧ah

架构实战营

毕业设计作业

薛定谔的指南针

架构实战营

架构实战营模块四作业

王晓宇

架构实战营

单向数据流-从共享状态管理:flux/redux/vuex漫谈异步数据处理

zhoulujun

React Redux vuex vue2 状态机

Android Jetpack Compose

Changing Lin

8月日更

13W字!腾讯高工手写“Netty速成手册”,3天能走向实战

Java~~~

Java 面试 微服务 Netty 架构师

【架构实战营】毕业设计

swordman

架构实战营

初学字典-python

加里都好

当农产品拥有“身份证”区块链技术如何助力农产品溯源监管?

CECBC

Github访问量破百万!原来是美团大牛的分布式架构实战笔记上线了

Java~~~

Java 面试 分布式 微服务 架构师

阿里开发人员献礼“Java架构成长笔记”,深入内核,拒绝蒙圈

Java~~~

Java spring 面试 微服务 架构师

05-高性能复杂度

Lane

架构实战营-毕业设计项目

阿体

从java注解漫谈到typescript装饰器——注解与装饰器

zhoulujun

Java 注解 装饰器 ts 元数据

如何整合RI续购日期_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章