写点什么

2022 年顶级机器学习算法和 Python 库

  • 2022-02-17
  • 本文字数:1854 字

    阅读完需:约 6 分钟

2022年顶级机器学习算法和Python库

新的算法很难产生,2022 年可能也不例外。然而,仍有一些机器学习算法和 Python 库将在未来更受欢迎。这些算法之所以与众不同,是因为它们包含了一些在其它算法中并不普遍的优点,我会在本文详细讨论这些优点。


无论是能够在你的模型中使用不同的数据类型,还是能够将内置算法整合到你当前公司的基础设施中,甚至是能够在一个地方比较几种算法的成功指标,你都可以预计,这些算法和库都会由于各种原因而在明年变得更受欢迎。下面,让我们更深入地了解一下 2022 年的一些新兴算法和库。

CatBoost

CatBoost 可能是最新的算法,因为它随着越来越流行而不断更新。这个机器学习算法对于处理分类数据的数据科学家特别有用。您可以考虑 Random Forest 和 XGBoost 算法的优点,CatBoost 具有它们的大部分优点,同时还具有更多其它的优点。


以下是 CatBoost 的主要优点:


  • 无需担心参数调整——默认值通常会胜出,通常不值得手动调整,除非您想通过手动更改值来针对特定的异常分布

  • 更准确——不太过拟合,并且当您使用更具分类性的特征时,往往会得到更准确的结果

  • 快速——这种算法往往比其它基于树的算法更快,因为它不必担心用于示例的使用独热编码(one-hot encoding)的大型稀疏数据集,因为它使用了一种目标编码

  • 更快地预测——您可以更快地训练,这样您也就可以更快地使用您的 CatBoost 模型进行预测

  • SHAP——这个库被集成,便于解释整体模型的特征重要性以及特定预测总的来说,CatBoost 非常棒,因为它易于使用、功能强大,在算法领域具有竞争力,并且可以列在您的简历中来增光添彩。它可以帮助您创建更好的模型,最终使您的项目更好地为您的公司服务。


CatBoost 的文档在此https://catboost.ai

DeepAR Forecasting

这个算法内置在流行平台 Amazon SageMaker 中,如果您的公司目前使用 AWS 技术栈或者想要使用 AWS 技术栈,这可能是个好消息。在回归神经网络的帮助下,它用于预测/时间序列应用中的有监督学习。


以下是使用这个算法时需要用到的输入文件字段的一些示例:


  • start

  • target

  • dynamic _feat

  • cat


以下是使用这个算法/架构的一些优点:

  • 易于建模——在相同的地方构建/训练/部署,速度相当快


  • 简单的架构——聚焦于更少的编码,更多地关注您的数据和需要解决的业务问题当然,这个算法还有更多优点,所以我只是简单地介绍了下,因为不是所有的读者都在使用 AWS。


DeepAR Forcasting 算法的文档在此

PyCaret

因为没有太多的新算法需要讨论,我想包括一种能够比较几种算法的库,其中一些算法可能会更新迭代,所以比较新。这个 Python 库是开源和低代码的,可以被引用。当我开始比较并最终选择我的数据科学模型的最终算法时,它让我更加了解新的和即将流行的机器学习算法。


以下是使用这个库的一些好处:


  • 更少的编码时间——您不需要导入库,也不需要设置每个算法特有的每个预处理步骤,相反,您可以填写一些参数,让您可以将几乎所有您听说过的算法并排进行比较

  • 易于使用——随着库的演变,它们的易用性也在不断提高。

  • 端到端处理——可以研究从数据转换到预测结果的数据科学问题

  • 集成良好——可以 Power BI 中使用 AutoML

  • 整合——可以加入不同的算法以获得更多好处

  • 校准和优化模型

  • 关联规则挖掘

  • 更重要的是,一次性比较 20+算法总的来说,这个库虽然并不是一个新算法,但是它很可能包含 2022 年的新算法,或者至少是最新的算法,甚至像上面提到的 CatBoost 这样的算法都包含在这个库中——这就是我如何发现它的。话虽如此,我认为重要的是要包含这个库,这样您不仅可以了解 2022 年的最新算法,还可以了解您以前没有听说过或者错过的比较老的算法,因为您可以通过简单的用户界面将它们并排进行比较。


PyCaret 的文档在此

总结

如果你认为这个列表很短,那么你就会意识到并不是每年都会有一组新的机器学习算法。我希望这里提到的 3 个算法或库能够增添文档并更受欢迎,因为它们非常棒且不同于通常的逻辑回归/决策树等。


总而言之,以下是 2022 年可以期待的一些新的机器学习算法:


* CatBoost - 算法* DeepAR Forecasting - 算法/软件包* PyCaret - 包括新算法的库
复制代码


我希望您会觉得我的这篇文章既有趣又有用。无论您是否同意文中的观点,请随意在下方留言,讲讲为什么支持或反对。您认为我们还可以包括哪些更重要的算法或软件包/库?这些当然可以进一步阐明,但我希望能够阐明一些更独特的机器学习算法和库。

作者介绍

Matt Przybyla 高级数据科学家,人工智能、科技和教育领域的顶尖作家,《面向数据科学》(Towards Data Science)供稿作家。


原文链接


https://towardsdatascience.com/top-machine-learning-algorithms-and-python-libraries-for-2022-86820f7ca67f

2022-02-17 11:1816393
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 583.6 次阅读, 收获喜欢 1981 次。

关注

评论

发布
暂无评论
发现更多内容

使用 Docker 部署 Django + MySQL 8 开发环境

AlwaysBeta

MySQL django Docker Dockerfile Docker-compose

区块链技术助力打造新公益样板

CECBC

生活困境

落曦

区块链想要拥有互联网级的用户体验,如何从应用层与公链去改进?

CECBC

个人博客网站搭建

北漂码农有话说

番外篇:新鲜上市的Unicorn - Pinterest的数据系统

顾仲贤

LeetCode 题解:1051. 高度检查器,JavaScript,先排序再比较,详细注释

Lee Chen

大前端 LeetCode

流量控制算法

架构 流量控制 流控算法

命令行一键启动Hadoop集群

我是个bug

大数据 hadoop hdfs YARN Big Data

看动画学算法之:排序-选择排序

程序那些事

数据结构 算法 动画

那些好用的命令

北漂码农有话说

【总结】性能优化

小胖子

ARTS Week8

时之虫

ARTS 打卡计划

性能压测的时候,系统响应时间和吞吐量如何变化,为什么?

不在调上

第七章作业

小胖子

Swift十年

SwiftMic

Swift十年

云原生技术栈的关键技术

李英俊

云原生 Go 语言

可读代码编写炸鸡八 - 变量兜兜转转像是一场梦

多选参数

代码 代码组织 代码规范 可读代码编写 可读代码

手写一个Vue风格组件

林浩

Java 大前端 webpack

redis系列之——数据持久化(RDB和AOF)

诸葛小猿

redis 持久化 aof rdb

Windows Sandbox

Dare Devor

Sandbox Virtualization

学习Rust,我的一些体会

Kurtis Moxley

编程 rust 随笔杂谈

解决火狐新窗口打开网页被拦截问题

Lee Chen

大前端

看动画学算法之:排序-归并排序

程序那些事

Java 算法 排序 归并排序

盘点本周区块链国内大事件

CECBC

kubernetes 集群安装(kubeadm)

小小文

Docker Kubernetes 群集安装 etcd

week7

不在调上

CECBC区块链专委会副主任吴桐受邀成为伏羲智库兼职研究员

CECBC

区块链技术 吴桐 商务部CECBC 伏羲智库 政务链

架构师训练营第六周课后总结

Cloud.

架构师训练营架构第七周总结

Cloud.

隐私计算:实现数据价值释放的突破口

CECBC

密码学 政策扶持 隐私计算 发展现状

2022年顶级机器学习算法和Python库_AI&大模型_Matt Przybyla_InfoQ精选文章