写点什么

阿里云 Redis 开发规范

  • 2019-04-02
  • 本文字数:3776 字

    阅读完需:约 12 分钟

阿里云Redis开发规范

本文介绍了在使用阿里云 Redis 的开发规范,从键值设计、命令使用、客户端使用、相关工具等方面进行说明,通过本文的介绍可以减少使用 Redis 过程带来的问题。

一、键值设计

1. key 名设计

  • (1)【建议】: 可读性和可管理性


以业务名(或数据库名)为前缀(防止 key 冲突),用冒号分隔,比如业务名:表名:id


ugc:video:1
复制代码


  • (2)【建议】:简洁性


保证语义的前提下,控制 key 的长度,当 key 较多时,内存占用也不容忽视,例如:


user:{uid}:friends:messages:{mid}简化为u:{uid}:fr:m:{mid}。
复制代码


  • (3)【强制】:不要包含特殊字符


反例:包含空格、换行、单双引号以及其他转义字符


详细解析

2. value 设计

  • (1)【强制】:拒绝 bigkey(防止网卡流量、慢查询)


string 类型控制在 10KB 以内,hash、list、set、zset 元素个数不要超过 5000。


反例:一个包含 200 万个元素的 list。


非字符串的 bigkey,不要使用 del 删除,使用 hscan、sscan、zscan 方式渐进式删除,同时要注意防止 bigkey 过期时间自动删除问题(例如一个 200 万的 zset 设置 1 小时过期,会触发 del 操作,造成阻塞,而且该操作不会不出现在慢查询中(latency 可查)),查找方法删除方法


详细解析


  • (2)【推荐】:选择适合的数据类型。


例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如 ziplist,但也要注意节省内存和性能之间的平衡)


反例:


set user:1:name tomset user:1:age 19set user:1:favor football
复制代码


正例:


hmset user:1 name tom age 19 favor football
复制代码

3.【推荐】:控制 key 的生命周期,redis 不是垃圾桶。

建议使用 expire 设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注 idletime。

二、命令使用

1.【推荐】 O(N)命令关注 N 的数量

例如 hgetall、lrange、smembers、zrange、sinter 等并非不能使用,但是需要明确 N 的值。有遍历的需求可以使用 hscan、sscan、zscan 代替。

2.【推荐】:禁用命令

禁止线上使用 keys、flushall、flushdb 等,通过 redis 的 rename 机制禁掉命令,或者使用 scan 的方式渐进式处理。

3.【推荐】合理使用 select

redis 的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

4.【推荐】使用批量操作提高效率

原生命令:例如mget、mset。非原生命令:可以使用pipeline提高效率。
复制代码


但要注意控制一次批量操作的元素个数(例如 500 以内,实际也和元素字节数有关)。


注意两者不同:


原生是原子操作,pipeline是非原子操作。pipeline可以打包不同的命令,原生做不到pipeline需要客户端和服务端同时支持。
复制代码

5.【建议】Redis 事务功能较弱,不建议过多使用

Redis 的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的 key 必须在一个 slot 上(可以使用 hashtag 功能解决)

6.【建议】Redis 集群版本在使用 Lua 上有特殊要求:

  • 1.所有 key 都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的 redis 命令,key 的位置,必须是 KEYS array, 否则直接返回 error,"-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS array"

  • 2.所有 key,必须在 1 个 slot 上,否则直接返回 error, “-ERR eval/evalsha command keys must in same slot”

7.【建议】必要情况下使用 monitor 命令时,要注意不要长时间使用。

三、客户端使用

1.【推荐】

避免多个应用使用一个 Redis 实例


正例:不相干的业务拆分,公共数据做服务化。

2.【推荐】

使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:


执行命令如下:Jedis jedis = null;try {    jedis = jedisPool.getResource();    //具体的命令    jedis.executeCommand()} catch (Exception e) {    logger.error("op key {} error: " + e.getMessage(), key, e);} finally {    //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。    if (jedis != null)         jedis.close();}
复制代码


下面是 JedisPool 优化方法的文章:


3.【建议】

高并发下建议客户端添加熔断功能(例如 netflix hystrix)

4.【推荐】

设置合理的密码,如有必要可以使用 SSL 加密访问(阿里云 Redis 支持)

5.【建议】

根据自身业务类型,选好 maxmemory-policy(最大内存淘汰策略),设置好过期时间。


默认策略是 volatile-lru,即超过最大内存后,在过期键中使用 lru 算法进行 key 的剔除,保证不过期数据不被删除,但是可能会出现 OOM 问题。

其他策略如下:
  • allkeys-lru:根据 LRU 算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。

  • allkeys-random:随机删除所有键,直到腾出足够空间为止。

  • volatile-random:随机删除过期键,直到腾出足够空间为止。

  • volatile-ttl:根据键值对象的 ttl 属性,删除最近将要过期数据。如果没有,回退到 noeviction 策略。

  • noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时 Redis 只响应读操作。

四、相关工具

1.【推荐】:数据同步

redis 间数据同步可以使用:redis-port

2.【推荐】:big key 搜索

redis大key搜索工具

3.【推荐】:热点 key 寻找(内部实现使用 monitor,所以建议短时间使用)

facebook的redis-faina


阿里云Redis已经在内核层面解决热点key问题,欢迎使用。
复制代码

五 附录:删除 bigkey

1. 下面操作可以使用pipeline加速。2. redis 4.0已经支持key的异步删除,欢迎使用。
复制代码

1. Hash 删除: hscan + hdel

public void delBigHash(String host, int port, String password, String bigHashKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    ScanParams scanParams = new ScanParams().count(100);    String cursor = "0";    do {        ScanResult<Entry<String, String>> scanResult = jedis.hscan(bigHashKey, cursor, scanParams);        List<Entry<String, String>> entryList = scanResult.getResult();        if (entryList != null && !entryList.isEmpty()) {            for (Entry<String, String> entry : entryList) {                jedis.hdel(bigHashKey, entry.getKey());            }        }        cursor = scanResult.getStringCursor();    } while (!"0".equals(cursor));        //删除bigkey    jedis.del(bigHashKey);}
复制代码

2. List 删除: ltrim

public void delBigList(String host, int port, String password, String bigListKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    long llen = jedis.llen(bigListKey);    int counter = 0;    int left = 100;    while (counter < llen) {        //每次从左侧截掉100个        jedis.ltrim(bigListKey, left, llen);        counter += left;    }    //最终删除key    jedis.del(bigListKey);}
复制代码

3. Set 删除: sscan + srem

public void delBigSet(String host, int port, String password, String bigSetKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    ScanParams scanParams = new ScanParams().count(100);    String cursor = "0";    do {        ScanResult<String> scanResult = jedis.sscan(bigSetKey, cursor, scanParams);        List<String> memberList = scanResult.getResult();        if (memberList != null && !memberList.isEmpty()) {            for (String member : memberList) {                jedis.srem(bigSetKey, member);            }        }        cursor = scanResult.getStringCursor();    } while (!"0".equals(cursor));        //删除bigkey    jedis.del(bigSetKey);}
复制代码

4. SortedSet 删除: zscan + zrem

public void delBigZset(String host, int port, String password, String bigZsetKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    ScanParams scanParams = new ScanParams().count(100);    String cursor = "0";    do {        ScanResult<Tuple> scanResult = jedis.zscan(bigZsetKey, cursor, scanParams);        List<Tuple> tupleList = scanResult.getResult();        if (tupleList != null && !tupleList.isEmpty()) {            for (Tuple tuple : tupleList) {                jedis.zrem(bigZsetKey, tuple.getElement());            }        }        cursor = scanResult.getStringCursor();    } while (!"0".equals(cursor));        //删除bigkey    jedis.del(bigZsetKey);}
复制代码

作者简介

付磊,快手 Cache 负责人,负责公司十数万个 Redis 保障性以及架构相关工作。前阿里云 Redis 数据库技术专家。出版过技术书籍《Redis 开发与运维》,豆瓣评分 9.0。开源 Redis 私有云平台 Cachecloud(github star 4000)。个人公众号为“Redis 开发运维实战”,ID:redisDevops。


2019-04-02 13:4625397

评论 1 条评论

发布
用户头像
想请求一下br/lpop这个命令如果redis连接的链路断掉,会不会造成连接池连接耗尽以及list数据堆积的问题
2019-04-08 16:15
回复
没有更多了
发现更多内容

当我们谈前端性能的时候,我们谈的是什么

vivo互联网技术

性能优化 大前端 页面

2020 阿里云原生实战峰会即将开幕 云原生落地的正确姿势

阿里巴巴云原生

阿里巴巴 阿里云 开发者 云原生 实战

为什么建议使用你 LocalDateTime ,而不是 Date?

Bruce Duan

LocalDateTime Date

数据结构与算法系列之散列表(一)(GO)

书旅

数据结构 算法 Go 语言

AR智能眼镜会成未来趋势

anyRTC开发者

人工智能 音视频 WebRTC RTC

DB-Engines 12月数据库排名: PostgreSQL拿下同期涨幅榜冠军,有望获得「2020年度数据库」荣誉?

华章IT

数据库 postgresql

《前端算法系列》数组去重

徐小夕

Java 面试 算法 大前端

一个依赖搞定 Spring Boot 反爬虫,防止接口盗刷!

Bruce Duan

反爬虫组件 kk-anti-reptile

区块链应用落地,区块链电子票据应用平台搭建

t13823115967

区块链+ 区块链应用 区块链落地开发

Redis 如何实现点赞、取消点赞

Bruce Duan

Redis实现点赞

悟空活动中台-打造 Nodejs 版本的MyBatis

vivo互联网技术

Java 大前端 mybatis nodejs

G20200388020528第二周作业

走走,停停……

Swift性能优化分析

ios swift

(G20200388020528)第一周练习

走走,停停……

从容应对11.11大促 京东智联云云硬盘做对了哪些事?

京东科技开发者

云计算 高可用 云硬盘

药品安全追溯系统开发区块链技术

13828808769

安全 区块链+

话题讨论 | 图解一致性哈希算法全小区局域网最通俗易懂

程序员柠檬

mybatis快速入门,so easy啦

田维常

mybatis

《算法问题整理》​.pdf

田维常

浅谈ToB市场精细化运营

Linkflow

营销数字化 客户数据平台 CDP 精细化运营

大厂iOS面试题全面讲解(上)

ios 面试

架构师训练营第一期 - 第十一周课后作业

卖猪肉的大叔

极客大学架构师训练营

即构科技肖传发:即刻构建在线教育的音视频互动场景

ZEGO即构

大厂也在用的 6种 数据脱敏方案,严防泄露数据的 “内鬼”

程序员小富

Java 数据脱敏;

通过docker获取系统运行情况的实用命令

晓川

TronChain波场链系统软件开发|TronChain波场链APP开发

系统开发

5种分布式事务方案与阿里的 Seata 中间件

Bruce Duan

分布式事务 seata

ZEGO即构科技荣获36氪【WISE2020中国新经济之王最具影响力企业】

ZEGO即构

《迅雷链精品课》第十一课:区块链常用共识算法介绍

迅雷链

区块链

Kubernetes 1.20发布,Release Logo变成一只猫

晓川

公安舆情分析重点人员管控系统搭建解决方案

t13823115967

智慧公安 舆情分析

阿里云Redis开发规范_服务革新_付磊_InfoQ精选文章