写点什么

Facebook 的 AI 从视频素材中学习物理位置之间的关系

  • 2020-02-28
  • 本文字数:1533 字

    阅读完需:约 5 分钟

Facebook的AI从视频素材中学习物理位置之间的关系

通常,计算机视觉系统擅长检测物体,但却很难理解这些物体所处的环境。这是因为它们将观察到的行为与物理环境分开了——即使是那些做了模型环境的系统也无法区分与行为相关的元素和不相关的元素(例如,柜台上的砧板与随便一块地板)。


本文最初发布于 VentureBeat,经原作者授权由 InfoQ 中文站翻译并分享。



在一段第一人称视频中,Ego-Topo 构建了一个环境的拓扑地图,揭示了活动中心区域以及它们被访问的顺序。(图片来源:Facebook)


通常,计算机视觉系统擅长检测物体,但却很难理解这些物体所处的环境。这是因为它们将观察到的行为与物理环境分开了——即使是那些做了模型环境的系统也无法区分与行为相关的元素和不相关的元素(例如,柜台上的砧板与随便一块地板)。


这就是为什么德克萨斯大学和 Facebook AI Research 的一组研究人员在论文Ego-Topo(该技术将从视频中捕捉到的空间分解成活动的拓扑地图,然后将视频组织成对不同区域的一系列访问)中对此进行了研究。将场景重组为“访问”而不是一系列的镜头,他们断言,Ego-Topo 能够推断第一人称行为(例如,一个人未来最可能采取什么行动?)和环境本身(例如,在一个特定的区域里有哪些可能的对象交互,即使尚未观察到的?)。


“我们的……[模型]比上面讨论的已有模型有优势……[I]提供了对过去的简洁的空间结构再现,[与]‘纯 3D’方法不同,我们的地图是根据人们对空间的使用有机地定义的。”


Ego-Topo 利用一个人工智能模型,它使用一个空间从视频中发现人们经常访问的地方,基于共享的物理空间和区域所提供的功能(与物理位置无关),按时间连接这些画面。(例如,视频开始时的洗碗机可能连接到结束时的同一台洗碗机,而厨房中的垃圾桶可能连接到另一厨房的垃圾处理机。)一组单独的模型利用生成的图来揭示环境的可用性,并在长视频中预测未来的动作。



跨多个区域的连接空间(例如,来自多个厨房的视频)有助于对环境及其功能用途的综合表示,这样,Ego-Topo 就能分析出环境的哪些部分与人类活动相关,以及这些区域的活动如何实现特定的目标。例如,给定一个厨房,即使不是每个视频都访问了厨房的所有部分,Ego-Top 也可以跨不同的视频进行连接,创建一个厨房的组合地图,说明这个永久化物理空间的用途。此外,它还可以连接多个厨房的区域,创建综合的地图,显示不同厨房之间的关系。


在实验中,该团队在两个关键任务上展示了 Ego-Topo:以一个新的视角推断可能的对象交互以及预测完成一个长期活动所需采取的行动。为了评估其性能,他们在 EGTEA Gaze+(其中包含 32 个主体在一个厨房里按照 7 个食谱准备一道菜的完整过程)和 EPIC-Kitchens(由日常厨房活动的视频,不局限于单一食谱或对象)上训练底层模型。



他们报告说,与基准相比,Ego-Topo 在所有预测层面上的表现都更好,而且它在预测遥远未来的行动方面表现出色。此外,他们还表示,将行动与模型拓扑图中发现的区域连接起来,可以得到进一步的改进,还可以根据其在综合图中的功能对空间进行对齐——特别是对于仅与单个位置相关的罕见类别。


“我们的方法最适合于(第一人称)视频中的长期活动,在这种活动中,区域会随着时间的推移以多种方式被反复访问和使用。这一定义广泛适用于常见的家庭和工作环境(如办公室、厨房、零售店、杂货店),”研究人员写道。“这些任务说明了一个能够成功推断场景功能的视觉系统将如何为增强现实(AR)和机器人技术的应用提供帮助。例如,如果一个 AR 系统知道在环境中哪些地方可以进行操作,那么它就可以通过教程以交互的方式指导用户;一个能够通过视频学习人们如何使用区域的移动机器人将可以在没有大量探索的情况下做好行动准备。”


英文原文:Facebook’s AI learns the relationships between physical places from first-person video footage


2020-02-28 15:131321

评论

发布
暂无评论
发现更多内容

ELK 教程 – 高效发现、分析和可视化你的数据

码语者

elastic DevOps ELK Elastic Stack ELK Stack

边开飞机边换引擎?我们造了个新功能保障业务流量无损迁移

阿里巴巴云原生

容器 运维 k8s 中间件 弹性计算

What CANN Can?一辆小车背后的智能故事

脑极体

排查dubbo接口重复注销问题,我发现了一个巧妙的设计

捉虫大师

dubbo

如何把 Caffeine Cache 用得如丝般顺滑?

vivo互联网技术

Java 缓存 服务器 Caffeine

你的企业会讲故事吗?

石云升

团队建设 28天写作 职场经验 管理经验 4月日更

赋能制造产业智能化转型 百度大脑开放日福州解密

百度大脑

百度大脑 开放日 智能化

Jcenter 停止服务,说一说我们的迁移方案

Antway

android maven Gradle

软件 IT 专业的高校学生有关在线课程的问卷调查

程序员历小冰

大数据基本导论

五分钟学大数据

大数据

Spring Cloud Stream 体系及原理介绍

阿里巴巴云原生

Java 负载均衡 微服务 云原生 中间件

特斯拉行车数据被篡改?专家称车企很难自证清白,保留“数据指纹”的区块链技术在路上

CECBC

指纹

HDFS NameNode中的FSImage与edits详解

五分钟学大数据

hdfs

死亡直播

箭上有毒

生活随想 4月日更

如何通过openLooKeng更高效访问HBase?

LooK

Java 大数据 Bigdata MySQL 高可用

聪明人的训练(二十八)

Changing Lin

4月日更

HDFS的Java API

五分钟学大数据

hdfs

云原生新边界——阿里云边缘计算云原生落地实践

阿里巴巴云原生

云计算 容器 运维 云原生 边缘计算

云信技术系列课 | RTC 系统音频弱网对抗技术发展与实践

网易云信

WebRTC 音频

智能小车系列-动力系统(ezPWM)

波叽波叽啵😮一口盐汽水喷死你

pwm ezPWM PWM信号

HDFS文件限额配置

五分钟学大数据

hadoop

资讯|WebRTC M90 更新

网易云信

WebRTC

最新、最全、最详细的 Git 学习笔记总结(2021最新版)

民工哥

后端 Git Submodule linux运维 代码管理

微信小程序登录流程详解

frank-say

C盘内存杀手,原来是这款出人意料的被闲置的软件|iTunes

彭宏豪95

效率 工具 4月日更 iTunes

面向软件 IT 专业的高校大学生课余时间自学情况调查

xiezhr

大学生日常 IT 高校学院 问卷调查

《趣学音视频》这段“朋友圈模版视频”的扛鼎之作是如何诞生的

ucsheep

Python 音视频 ffmpeg Pillow

IT 专业高校大学生就业方向状况调查问卷

架构精进之路

调查报告 4月日更 InfoQ 写作平台 1 周年

百度智能云成中国跳水队独家AI合作伙伴圆梦东京!

百度大脑

百度智能云

智能小车系列-串口设置

波叽波叽啵😮一口盐汽水喷死你

串口 树莓派串口 ttyAMA0

生命中的无奈

小天同学

读书 读后感 生命 4月日更

Facebook的AI从视频素材中学习物理位置之间的关系_AI&大模型_KYLE WIGGERS_InfoQ精选文章