写点什么

Uber 开源 Plato 平台,用于开发和测试会话 AI

  • 2019-07-17
  • 本文字数:2428 字

    阅读完需:约 8 分钟

Uber开源Plato平台,用于开发和测试会话AI

在过去的几十年里,智能会话代理经历了重大变化,从以关键字为目标的交互式语音应答(IVR)系统到跨平台智能个人助理,都成为日常生活中不可或缺的一部分。伴随着这些变革和增长,需要一个直观、灵活、全面的研发平台,(它)可以作为一个开放的测试平台帮助评估新算法、快速创建原型并可靠地部署会话代理。在这种背景下,Uber 开发并开源了 Plato 研究对话系统。

Uber Plato 平台在 GitHub 开源

据外媒 Venture Beat 报道,Uber 开源了柏拉图研究对话系统(Plato Research Dialog System)。它是一个可用于在各种环境下创建、训练和部署会话 AI 代理的平台,让数据科学家和业余爱好者能够在会话 AI 中进行最先进的研究,并快速创建原型、演示系统及促进对话数据采集​​。该系统将与谷歌的 Dialogflow、微软的 Bot 框架和亚马逊的 Lex 等产品展开竞争。


Plato 的设计“干净”、“可理解”,并与现有的深度学习和模型调优优化框架(贝叶斯优化框架)集成,可减少编写代码的需要。


Plato(版本 0.1)的第一次迭代支持通过语音、文本或对话行为进行交互,每个会话代理可以与数据,人类用户或其他会话代理进行交互(在多代理设置中)。此外,Plato 可以为每个会话代理组件合并预训练的模型,且可以在交互的过程中或从数据中对每个组件进行训练。


Plato 通过模块化设计将数据处理分解为七个步骤:语音识别、语言理解、状态跟踪、API 调用、对话策略、语言生成、语音合成。Plato 支持一系列会话式 AI 架构,每个元素都可以使用主流的机器学习库进行训练,例如 Uber 的 Ludwig,Google 的 TensorFlow 和 Facebook 的 PyTorch。


为了证明它的可扩展性,Plato 用户可以定义自己的体系结构,或通过提供 Python 类名和模块的程序包路径及模型的初始化参数来插入自己的组件。只要模块按照(它)应该执行的顺序列出来,Plato 就会处理其余的部分,包括封装输入和输出、链接和执行模块(串行或并行),以及让对话变得更容易。


在数据记录方面,Plato 会在一个名为 Dialogue Episode Recorder 的结构中跟踪事件,该结构包含,先前对话状态,所采取的操作,当前对话状态等信息,甚至还有一个自定义字段可用于跟踪不属于已定义类别的任何内容。


Uber AI 研究团队表示 :“我们相信,Plato 能够在 Ludwig、TensorFlow、PyTorch、Keras 和其他开源项目的深度学习框架中更加无缝地训练会话代理,从而提升学术和行业应用中的对话 AI 技术。“

Plato 研究对话系统如何运作?

从概念上来讲,会话代理需要经过各种步骤来处理它接收到的“输入”内容,并输出合适的答案(如“有风但不太冷”)。与标准体系结构的主要组件(参见图 1)相对应的主要步骤是:


  • 语音识别(将语音转录为文本)

  • 语言理解(从该文本中提取意义)

  • 状态跟踪(到目前为止已经说过和完成的内容的汇总信息)

  • API 调用(搜索数据库,查询 API 等)

  • 对话政策(生成代理人回应的抽象含义)

  • 语言生成(将抽象意义转换为文本)

  • 语音合成(将文本转换为语音)


Plato 被设计的尽可能地模块化和灵活性; 它支持传统和自定义的会话 AI 体系架构,而且很重要地是,它支持多参与方交互,其中有不同角色的多个代理可以相互交互、同时训练并解决分布式问题。


下面的图 1 和图 2 描述了与人类用户和模拟用户交互时的示例 Plato 对话代理体系结构。与模拟用户交互是研究团体快速启动学习的一种常见做法(即,在与人类交互之前先学习一些基本行为)。因为 Plato 是一个通用框架,所以可以使用任何机器学习库(例如 Ludwig、TensorFlow、PyTorch 等)在线或离线训练每个独立的组件,Uber 的开源深度学习工具箱 Ludwig 是一个不错的选择,因为它不需要编写代码且完全兼容 Plato。



图 1:Plato 的模块化架构意味着任何组件都可以在线或离线进行训练,可以通过自定义或预先训练的模型进行替换。(此图中的灰色组件不是 Plato 核心组件。)



图 2:使用模拟用户而不是人类用户,如图 1 所示,我们可以预先训练 Plato 各种组件的统计模型。接下来,这些可以用于创建原型会话代理,该代理可以与人类用户交互来收集更多自然数据,随后,这些数据可用来训练更好的统计模型。(此图中的灰色组件不是 Plato 核心组件。)


除了单代理交互之外,Plato 还支持多代理对话,多个 Plato 代理可以相互交互并相互学习。具体来说,Plato 将生成会话代理,确保输入和输出(每个代理听到和说出的内容)被恰当地传递给每个代理,并跟踪对话。


这种设置可以促进多代理学习的研究,代理需要学习如何生成语言以执行任务,以及研究多方交互的子领域(对话状态跟踪、轮流等)。对话原则定义了每个代理可以理解的内容(实体或含义的存在论;如价格、位置、偏好、烹饪类型等)及它可以做什么(询问更多信息、提供一些信息、调用 API 等)。代理可以通过语音,文本或结构化信息(对话行为)进行沟通,每个代理都有自己的配置。下面的图 3 描述了这种架构,概述了两个代理和各种组件之间的沟通:



图 3:Plato 的架构允许对多个代理进行同时训练,每个代理具有潜在的不同角色和目标,并且可以促进多方交互和多代理学习等领域的研究。(此图中的灰色组件不是核心的 Plato 组件。)


最后,Plato 通过下面图 4 所示的通用代理体系结构来支持自定义体系结构(如,将 NLU 分成多个独立组件)和联合训练的组件(如文本到对话状态、文本到文本或任何其他组合。此模式脱离了标准会话代理体系结构,支持任何类型的体系结构(如使用联合组件、文本到文本或语音到语音组件、或任何其他设置)并允许加载现有或预先训练有素的模型进入 Plato。



图 4:Plato 的通用代理体系结构支持广泛的自定义,包括联合组件,语音到语音组件和文本到文本组件,所有这些组件都可以串行或并行执行。


Plato 还通过组合结构(BOCS)的贝叶斯优化为会话 AI 架构或单个模块参数的贝叶斯优化提供支持。


原文链接:


https://venturebeat.com/2019/07/16/researchers-create-tiny-beyond-5g-chip-for-100ghz-data-transmission/


https://github.com/uber-research/plato-research-dialogue-system


2019-07-17 16:127109
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 583.4 次阅读, 收获喜欢 1981 次。

关注

评论 1 条评论

发布
用户头像
这个神器支持中文么?
2019-07-17 16:30
回复
没有更多了
发现更多内容

SpringCloud - Eureka核心源码解析

码农参上

微服务 SpringCloud Eureka 注册中心

Salesforce 容器化 ISV 场景下的软件供应链安全落地实践

阿里巴巴中间件

阿里云 容器 云原生

优博讯出席OpenHarmony技术日,全新打造下一代安全支付终端

极客天地

秒云荣获《2022爱分析 · IT运维厂商全景报告》智能运维AIOps市场代表厂商

MIAOYUN

云原生 智能运维 IT运维 智能运维AIOps

SpringBoot 3.0最低版本要求的JDK 17,这几个新特性不能不知道!

博文视点Broadview

Spring Boot零配置启动原理

码农参上

Spring Cloud springboot

【值得收藏】Centos7 安装mysql完整操作命令

迷彩

MySQL 数据库 centos 6月月更

Rxjs mergeMap 的使用场合

汪子熙

typescript 响应式编程 angular RXJS 6月月更

Elasticsearch 在地理信息空间索引的探索和演进

vivo互联网技术

elasticsearch 数据分析 数据检索

预约直播 | 主流视觉算法介绍及在PAI上的应用

阿里云大数据AI技术

机器学习 视觉算法

居家办公竟比去公司上班还累? | 社区征文

架构精进之路

初夏征文

EMQ携手谐云,打造车联网平台联合解决方案

EMQ映云科技

车联网 物联网 IoT 兼容性测试 6月月更

前端食堂技术周刊第 42 期:Vue 2.7 Beta、TS 4.8 Beta、React 开源奖、ECMAScript 2022

童欧巴

JavaScript typescript Vue 前端 React

TDengine 邀请函:做用技术改变世界的超级英雄,成为 TD Hero

TDengine

数据库 tdengine

基于STM32设计的蓝牙健康管理设备

DS小龙哥

6月月更

在外企远程办公是什么体验? | 社区征文

Geek_rze78a

Java 程序员 远程办公 外企 初夏征文

JavaScript 回调函数/Promise/ async/await

源字节1号

软件开发 前端开发 后端开发

java培训redis集群原理详解

@零度

redis java培训

红包雨: Redis 和 Lua 的奇妙邂逅

勇哥java实战分享

Vue3+ElementPlus+Axios实现从后端请求数据并渲染

Python研究所

6月月更

Future & CompletionService

Ayue、

多线程 Future接口

华为开启2022全球校园AI算法精英大赛 百万奖金等你来挑战算法极限

科技汇

web前端培训组件内部数据state的知识点分享

@零度

前端开发 state

Drive to APasS!使用明道云管理F1赛事

明道云

我大抵是卷上瘾了,横竖睡不着!竟让一个Bug,搞我两次!

小傅哥

小傅哥 异常 bug 连接池 面试问题

直播电子商务应用程序开发需要什么基本功能?未来发展前景如何?

开源直播系统源码

软件开发 直播源码 带货直播

政策关注 | 加快构建数据基础制度,维护国家数据安全

青藤云安全

数据治理 数据安全

大数据培训Scala 类和对象知识与案例分享

@零度

scala 大数据

面试突击60:什么情况会导致 MySQL 索引失效?

王磊

Java MySQL 面试

centos7防火墙完整操作命令,值得的收藏

迷彩

Linux 运维 Centos 7 防火墙 6月月更

私藏干货分享:关于企业架构中如何进行平台化

松子(李博源)

企业架构 数据架构 业务架构 大数据平台 平台

Uber开源Plato平台,用于开发和测试会话AI_AI&大模型_刘燕_InfoQ精选文章