写点什么

考公考编统统拿下,AI 做题家来卷人类了!微软发布新型基准测试 AGIEval,GPT-4 作答高考英语准确率超 90%

  • 2023-05-12
    北京
  • 本文字数:3152 字

    阅读完需:约 10 分钟

考公考编统统拿下,AI做题家来卷人类了!微软发布新型基准测试AGIEval,GPT-4作答高考英语准确率超90%

考公考编竞赛统统拿下,AI 做题家来卷人类了!微软发布新型基准测试 AGIEval,GPT-4 作答高考英语准确率超 90%


对基础模型在处理人类任务时的一般能力做出准确评估,已经成为通用人工智能(AGI)开发和应用领域的一大重要问题。基于人工数据集的传统基准往往无法准确反映模型能力是否达到人类水平。


近日,微软的一个华人研究团队发布了一项新型基准测试 AGIEval,这项基准测试专门用于对基础模型的类人能力做准确考察(涵盖高考、法学入学考试、数学竞赛和律师资格考试等)。


该研究团队使用此项基准评估了当前最先进的多个基础模型,包括 GPT-4、ChatGPT 和 Text-Davinci-003 等。


令人印象深刻的是,GPT-4 在 SAT、LSAT 和数学竞赛中的表现均超过人类平均水平,在 SAT 数学测试中达成 95%的准确率,在中国高考英语测试中准确率亦达到 92.5%,证明了当代基础模型的非凡性能。


与之对应,研究人员发现 GPT-4,在需要复杂推理或涉及特定领域知识的任务中表现尚不理想。


通过对模型能力(理解、知识、推理和计算等)的全面分析,有助于揭示这些模型的优势和局限性,为增强其通用能力的未来发展方向提供支持。通过测试涉及人类认知和决策能力的任务,AGIEval 能够对基础模型在现实场景中的性能做出更可靠、更有意义的评估。


测试中的全部数据、代码和模型输出均通过此 https URL(https://github.com/microsoft/AGIEval)发布。

AGIEval

项目介绍

AGIEval 是一项考察基础模型类人能力的基准测试,专门用于评估基础模型在人类认知和问题解决相关任务中表现出的一般能力。


该基准选取 20 种面向普通人类考生的官方、公开、高标准往常和资格考试,包括普通大学入学考试(中国高考和美国 SAT 考试)、法学入学考试、数学竞赛、律师资格考试、国家公务员考试等等。


关于此基准的完整描述,请参阅论文《AGIEval:准确考察基础模型类人能力的基准评估工具》(https://arxiv.org/pdf/2304.06364.pdf)。

任务与数据

AGIEval v1.0 包含 20 项任务,具体为 2 项完形填空任务(高考数学)和 18 项多选题回答任务。在选择题部分,高物理和 JEC-QA 部分对应一个或多个正确答案,其余任务则仅有一个正确答案。


下表所示,为测试题目的完整列表。



可以在 data/v1 文件夹内下载到除 JEC-QA 以外的所有后处理数据。关于 JEC-QA 部分,请前往 JEC-QA 网站获取数据。


使用 JEC-QA 训练数据的前 1000 个实例作为测试集。


所有数据集的数据格式如下:


 {    "passage": null,    "question": "设集合 $A=\\{x \\mid x \\geq 1\\}, B=\\{x \\mid-1<x<2\\}$, 则 $A \\cap B=$ ($\\quad$)\\\\\n",    "options": ["(A)$\\{x \\mid x>-1\\}$",        "(B)$\\{x \\mid x \\geq 1\\}$",        "(C)$\\{x \\mid-1<x<1\\}$",        "(D)$\\{x \\mid 1 \\leq x<2\\}$"        ],    "label": "D",    "answer": null}
复制代码


其中高考语言、高考英语、两科 logiqa、全部 LSAT 和 SAT 均可使用 passage 字段。多选任务的答案保存在 label 字段内。完形填空任务的答案保存在 answer 字段内。


我们还在 data/v1/few_shot_prompts 文件中提供了小样本学习的提示词。

基线系统

我们在 AGIEval v1.0 上评估了基准系统的性能。基线系统基于以下模型:text-davinci-003、ChatGPT (gpt-3.5-turbo) 和 GPT-4。 您可以按照以下步骤重现测试结果:


  1. 在 openai_api.py 文件中填写您的 OpenAI API 密钥。

  2. 运行 run_prediction.py 文件以获取结果。

模型输出

您可以在 Onedrive 链接(https://1drv.ms/u/s!Amt8n9AJEyxcg8YQKFm1rSEyV9GU_A?e=VEfJVS)中下载到基线系统的零样本、零样本思维链、少样本和少样本思维链输出。请注意,我们修复了 SAT-en 实例中的 52 处拼写错误,并将很快发布更新后的数据集输出。

评估

您可以运行 post_process_and_evaluation.py 文件来获取评估结果。

引用

如果您需要在研究中使用 AGIEval 数据集或代码,请引用论文:


@misc{zhong2023agieval,      title={AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models},      author={Wanjun Zhong and Ruixiang Cui and Yiduo Guo and Yaobo Liang and Shuai Lu and Yanlin Wang and Amin Saied and Weizhu Chen and Nan Duan},      year={2023},      eprint={2304.06364},      archivePrefix={arXiv},      primaryClass={cs.CL}}
复制代码


在使用时,请务必在您的论文中引用所有独立数据集。我们提供以下引用信息:


  @inproceedings{ling-etal-2017-program,    title = "Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems",    author = "Ling, Wang  and      Yogatama, Dani  and      Dyer, Chris  and      Blunsom, Phil",    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",    month = jul,    year = "2017",    address = "Vancouver, Canada",    publisher = "Association for Computational Linguistics",    url = "https://aclanthology.org/P17-1015",    doi = "10.18653/v1/P17-1015",    pages = "158--167",    abstract = "Solving algebraic word problems requires executing a series of arithmetic operations{---}a program{---}to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs.",} @inproceedings{hendrycksmath2021,  title={Measuring Mathematical Problem Solving With the MATH Dataset},  author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},  journal={NeurIPS},  year={2021}} @inproceedings{Liu2020LogiQAAC,  title={LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning},  author={Jian Liu and Leyang Cui and Hanmeng Liu and Dandan Huang and Yile Wang and Yue Zhang},  booktitle={International Joint Conference on Artificial Intelligence},  year={2020}} @inproceedings{zhong2019jec,  title={JEC-QA: A Legal-Domain Question Answering Dataset},  author={Zhong, Haoxi and Xiao, Chaojun and Tu, Cunchao and Zhang, Tianyang and Liu, Zhiyuan and Sun, Maosong},  booktitle={Proceedings of AAAI},  year={2020},} @article{Wang2021FromLT,  title={From LSAT: The Progress and Challenges of Complex Reasoning},  author={Siyuan Wang and Zhongkun Liu and Wanjun Zhong and Ming Zhou and Zhongyu Wei and Zhumin Chen and Nan Duan},  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},  year={2021},  volume={30},  pages={2201-2216}}
复制代码


参考链接:


https://arxiv.org/abs/2304.06364


https://github.com/microsoft/AGIEval

2023-05-12 17:239303
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 601.1 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

线程的创建方法

卢卡多多

线程池 线程安全 6月月更

人人都在搞数据治理

奔向架构师

数据治理 数据管理 6月月更

【Java Web系列】Cookie的原理分析和使用细节

倔强的牛角

Java javaWeb Cookie 6月月更

浅谈隐私计算与数据安全

I

学习笔记 数据安全 隐私计算 可信安全计算

攻防演练中六条安全体系建议

穿过生命散发芬芳

6月月更 攻防演练

物联网低代码平台如何查询授权信息?

AIRIOT

物联网 低代码开发

flutter系列之:flutter中常用的ListView layout详解

程序那些事

flutter 程序那些事 6月月更

架构实战营模块 8 作业

热猫

【愚公系列】2022年06月 通用职责分配原则(一)-信息专家原则

愚公搬代码

6月月更

【涨姿势】你没用过的BadgeDrawable

yechaoa

android 6月月更 material design BadgeDrawable

G1收集器概述

Nick

Java GC G1垃圾回收器 6月月更 Garbage-First Collector

Python代码自动提取Win10内置的锁屏壁纸

宇宙之一粟

Python 6月月更

spring4.1.8扩展实战之三:广播与监听

程序员欣宸

Java spring Spring Framework 6月月更

Camtasia2022全新版功能详情讲解

茶色酒

Camtasia Studio2022

vue监听器

小恺

6月月更

数据库每日一题---第11天:合作过至少三次的演员和导演

知心宝贝

数据库 前端 后端 6月月更

数组(二)

Jason199

数组 js 数组操作 6月月更

软件测试需要学习什么?好学吗?需要学多久?到底是报班好还是自学好?

伤心的辣条

程序员 程序人生 软件测试 自动化测试 Python自动化

leetcode 310. Minimum Height Trees 最小高度树(中等)

okokabcd

LeetCode 搜索 数据结构与算法

改造微服务的三个时机

阿泽🧸

微服务 6月月更

Docker常用命令总结

乌龟哥哥

6月月更

Archiva 运行时提示 JAXBException 错误

HoneyMoose

Vue3 Composition API如何替换Vue Mixins

源字节1号

前端开发 小程序开发

比Postman更适合国人的接口调试工具

伤心的辣条

程序员 自动化测试 接口测试 Python自动化 程序员程序人生

黄硕:百度飞桨文心大模型在语音文本审核中的应用

声网

RTC Dev Meetup 生态专栏 语音处理

Android ShapeableImageView使用详解,告别shape、三方库

yechaoa

android 6月月更 material design ShapeableImageView

前端uni框架学习day_2

恒山其若陋兮

前端 6月月更

模块四(千万级学生管理系统的考试试卷存储方案)

Geek_701557

读书笔记之:认知觉醒

甜甜的白桃

读书 书单 阅读 6月月更

MobX 获取网络数据来渲染酷炫的曲线

岛上码农

flutter ios 前端 安卓 6月月更

静态链接,静态分派,动态链接

北洋

android 6月月更

考公考编统统拿下,AI做题家来卷人类了!微软发布新型基准测试AGIEval,GPT-4作答高考英语准确率超90%_AI&大模型_刘燕_InfoQ精选文章