写点什么

谷歌研究团队找到提高自我监督学习鲁棒性的方法

  • 2020-03-08
  • 本文字数:1989 字

    阅读完需:约 7 分钟

谷歌研究团队找到提高自我监督学习鲁棒性的方法

如何进一步提高自我监督学习的鲁棒性是计算机视觉领域的一大难题,Google Brain 的研究人员就此问题发表了一篇论文,本文为 AI 前线第 105 篇论文导读,我们将对这篇论文的具体方法和效果进行解读。


近日,Google Brain 研究人员发表了一篇关于“如何提高自我监督学习的鲁棒性方法”的新研究。研究中提出了一个自动删除快捷方式特征的通用框架,该框架能使自我监督的模型优于以传统方式训练的模型。

摘要

在自我监督的视觉表现学习中,特征提取器在一个“预置任务”(Pretext task 可以理解为是一种为达到特定训练任务而设计的间接任务或预置任务)上进行训练,因为可以快速生成标签。这种方法存在的一个主要问题是,特征提取器在快速学习过程中关注于低级视觉特征(low-level visual features),例如色差或水印,无法学习有用的语义表示。


为解决这一问题,研究人员提出了一个自动删除快捷特征的通用框架。我们的主要假设是,那些最初被用来解决预置任务的特征也是在经过对抗训练后最容易成为增加任务难度的特征。我们通过训练“镜头”网络进行微小的图像更改,从而最大程度降低预置任务的性能,证明了这种假设适用于常见的预置任务和数据集。在所有测试中,使用修改过的图像学习的表现都优于未使用修改过的图像学习的表现。此外,镜头所做的修改揭示了预置任务和数据集的选择如何影响自我监督学习的特征。

方法

我们建议使用一个轻量级的图像-图像转换网络(或称“镜头”)来处理图像,以提高自我监督的视觉表现,该网络通过对抗训练来弱化特征提取网络在预置任务上的性能。在本研究中,我们首先定义了“快捷”视觉特征的概念。


直观地说,根据预置任务和学习表现的下游应用,快捷特征可以定义为(i)能够通过关注低级视觉特征快速、准确解决预置任务的特征;(ii)对下游应用程序是无用的,且能阻止学习有用的语义表示。



图注:旋转预测预置任务的自动快捷删除示例。镜头学会了删除预置任务更容易解决的特征(具体来说,它在这个例子中隐藏了水印)。快捷删除迫使网络学习更高级的特性来解决预置任务,提高了语义表示质量。


我们首先规范化基于预置任务的 SSL 的一般设置,然后描述如何修改这个设置来防止快捷特征。



对于分类预置任务,我们可以训练镜头,使预测的类概率偏向于可能性最小的类。因此损失函数变成:



具体方法可以归结为:


  • 提出一个简单而通用的自动删除快捷方式的方法,几乎可以适用于任何预置任务。

  • 我们在大量的预置任务和两个不同的训练数据集(ImageNet 和 YouTube-8M frames)上验证了所提出的方法,在所有方法、上游训练数据集和两个下游/评估数据集(ImageNet 和 Places205)上显示出均有改善。特别需要注意的是,我们的方法可以替代那些人工手动删除快捷特征的预处理过程。

  • 我们使用镜头来比较不同预置任务和数据集之间的快捷特征。

实验

在实验中,研究人员在开源数据集 CIFAR-10 上训练了一种自我监督模型,并对其进行预测,以预测稍微旋转的图像的正确方向。为了测试镜头,他们在输入图像上添加了带有方向信息的快捷特征,这些快捷特征使模型无需学习目标级特征即可解决旋转任务。研究人员在报告中称,从合成的快捷特征中学习的模型(没有镜头)的语义表示表现不佳,而戏剧性的是,从镜头中学习的特征提取器总体上表现更好。



图注:模型示意图。在本文的实验中,我们对镜头 L 使用 U-Net 框架,对特征提取器 F 使用 ResNet50 v2 框架。



图注:使用不同的自我监督预置任务对 ImageNet 上训练的模型的表示进行评估。这些分数在逻辑回归模型中是准确的(以 %为单位)。以粗体表示的值在 0.05 的显著性水平上优于次佳的方法。训练图像按照各自的原始文件进行预处理。



图注:顶部:三张来自 ImageNet 的示例图像,由经过不同预置任务训练的镜头处理。输入图像上的虚线方块显示了用于基于补丁的任务的区域;底部:从测试集中随机选择的 1280 张图像的平均重建损失函数值。为了显示方便,截取了第 95 个百分位数。


在第二项测试中,该团队在开源语料库 ImageNet 中的一百万幅图像上训练了一个模型,并让其预测了图像中包含的一个或多个补丁的相对位置。研究人员称,对于所有已测试的任务,增加镜头可以使 baseline 得到改善。

结论

研究人员总结称:“结果表明,使用经过对抗训练的镜头自动删除快捷方式的好处可广泛应用于所有预置任务和数据集。此外,我们发现,各种类型的特征提取器都具备这种能力。除了提高表示方法外,我们的方法使我们能更直观地看到通过自我监督学习的特征,并能对这些特征进行量化和比较。我们确认,这种方法可以检测并弱化先前工作中出现的快捷特征。”


在未来的研究中,Google Brain 研究团队计划探索新的镜头架构,并探究该技术是否可以应用于进一步改进监督学习算法的问题上。


论文地址:


https://arxiv.org/pdf/2002.08822.pdf


参考链接:


https://venturebeat.com/2020/02/26/researchers-method-improving-self-supervised-ai-model-robustness/


2020-03-08 13:403677

评论 1 条评论

发布
用户头像
类似于gan
2020-03-12 18:13
回复
没有更多了
发现更多内容

不忘过去,不畏将来

小天同学

5月日更 汶川地震 不忘过去

如何让消息队列达到最大吞吐量?

万俊峰Kevin

微服务 消息队列 Queue Go 语言

深度剖析 | 关于数据锁定和读取一致性问题

VoltDB

数据库 数据分析 5G

华为云官网负责人明哥:我们是如何做到门面不倒,8个月挑战业界翘楚?

华为云开发者联盟

JavaScript node.js Serverless 云原生 大前端

百信银行基于 Apache Hudi 实时数据湖演进方案

Apache Flink

大数据 flink

微服务转型系列4:理念指导实践,厘清微服务建设的主要内容和顺序

BoCloud博云

微服务

【LeetCode】停在原地的方案数Java题解

Albert

算法 LeetCode 5月日更

音视频在智能手表上的应用

anyRTC开发者

音视频 WebRTC IoT RTC

作为最好用的可观测平台,如何监控 Grafana

耳东@Erdong

Grafana Prometheus 5月日更

SpringBoot技术专题—来看看异步处理返回方案

码界西柚

Java WebAsyncTask 5月日更 AsyncContext DeferredResult

test1

靠谱哥

51CTO熊平:HarmonyOS是大势所趋

科技汇

怎样做好服务提供方

程序员架构进阶

架构设计原则 服务化 28天写作 5月日更

追寻软件定义的梦想汽车

车骑

自动驾驶 智能汽车 软件定义汽车 汽车制造

一文带你读懂PyQt:用Python做出与C++一样的GUI界面应用程序

老猿Python

python str模块

若尘

Python编程 str 5月日更

GitHub开源:狗屁不通文章生成器

不脱发的程序猿

GitHub 开源 狗屁不通文章生成器

Arthas-技术专题-使用指南

码界西柚

Arthas 5月日更

VMWare中Ubuntu网络配置

进击的梦清

Linux 运维 vmware 网络配置

华为中国生态大会2021举行在即,GaussDB将重磅发布5大解决方案

华为云开发者联盟

数据库 opengauss 华为云 GaussDB 云数据库

PyQt5 实现可空值的 QDateTimeEdit

一代咩神

Python PyQt QDateTimeEdit

参照STM32时钟树配置STM32CubeMX Clock Configuration(STM32L011G4U6为例)

不脱发的程序猿

单片机 STM32微控制器 时钟树 STM32CubeMX STM32时钟配置

ThreadLocal不好用?那是你没用对!

王磊

Java 后端 多线程 ThreadLocal 5月日更

声网、新东方、伴鱼英语的音视频技术解读

Jessie

音视频 视频消音

Nginx性能分析之gpreftools

运维研习社

nginx 性能分析 5月日更

Fluid 进入 CNCF Sandbox,加速大数据和 AI 应用拥抱云原生

阿里巴巴云原生

人工智能 容器 云原生 调度 弹性计算

真实的DevOps落地,应该是这样的 ↓

BoCloud博云

DevOps 敏捷开发

单片机I/O控制方式(UART中断和DMA中断的区别)

不脱发的程序猿

嵌入式 单片机 GPIO的原理、特性 单片机I/O设备的控制方式

最近又有出什么新电影,要不要停泊片刻,与好友相约一起来去看呢?

叶小鍵

给Java小白,整理一套能上手的简单编程算法题!!!

小傅哥

Java 程序员 数据结构 算法 小傅哥

聊聊人像抠图背后的算法技术

华为云开发者联盟

hilens 抠图 工程 抠图算法 baseline

谷歌研究团队找到提高自我监督学习鲁棒性的方法_AI&大模型_Google_InfoQ精选文章