写点什么

卫星影像识别技术在高德数据建设中的探索与实践

  • 2020-04-12
  • 本文字数:2457 字

    阅读完需:约 8 分钟

卫星影像识别技术在高德数据建设中的探索与实践

导读

对于地图服务而言,地图数据的准确率和覆盖率是服务质量的关键因素,而地图数据的更新,依赖于多种信息源,如轨迹热力,实采图像,卫星影像等。近年来,由于遥感卫星数量的增多及高分辨率光谱相机的出现,以及卫星影像图自身覆盖广、视角好、信息丰富的特点,卫星影像作为地图数据更新的信息源起到了越来越重要的作用。


对于卫星影像的使用方式,高德经历了由前端用户展示,到人工数据作业参考,再到主动发现更新地图数据的进化过程,这同时也是我们不断挖掘影像数据价值的过程。本文会介绍高德视觉团队将卫星影像从被动参考升级为主动发现的过程中的探索和实践。

卫星影像关键元素

按照几何结构划分,影像元素可分为三大类:道路元素(road),地物元素(region),建筑物元素(building):


道路元素:包含普通道路,精细道路(主/辅路/非机动车道,提前右转路),连接点(贯穿路、出入口、掉头口、路口等)。


地物元素:包含建筑区域、拆迁区域、水域、农田、山区、林地、大棚等。


建筑物元素:建筑物楼块。


卫星影像在数据更新上的优势

路网是地图数据的基础,所有的道路属性、动态事件、POI 引导都需要基于准确的路网数据信息。而卫星影像由于具有上帝视角,对区域内路网的连接关系、复杂的路口关系、平立交关系的判断具有全局而丰富的信息支撑。同时,由于卫星影像覆盖广、成本低的特点,对于热力稀疏或者采集车难以覆盖的区域,可以进行很好的路网数据补充。



路网三大信息源:热力、卫星影像、实采


作为用户导航的终点,POI(“Point of interest”的缩写,在地图数据中,一个 POI 可以是一栋房子、一个商铺、一个公交站等)坐标位置的准确性十分重要。通过高德 POI 中 Top1000w 的统计,70%的 POI 需要与楼块进行绑定,POI 到达点与沿街楼块具有强依赖关系。



POI 与楼块强相关性

卫星影像识别技术探索实践

卫星影像精细语义分割(Semantic)


在语义分割上,为了提升算法精度,我们将主要方向聚焦在上下文信息的结合,如使用了 U-Net 结构、ASPP、Non-local 等对信息的聚合具有作用的结构。同时引入了 Attention 加强了网络对图像显著区域,即当前分割任务所关注的类别进行了注意力聚焦,使得效果达到进一步提升。


  • U-Net 结构


由于影像图像语义较为简单、结构较为固定,高级语义信息和低级特征都显得很重要,因此我们选用了 U-Net 作为网络的基础结构。Encoder-Decoder 分别下采样 4 次+上采样 4 次,将 Encoder 得到的高级语义特征图恢复到原图片的分辨率。


相比于 FCN 和 Deeplab 等,U-Net 共进行了 4 次上采样,并在同一个 Stage 使用了 Skip Connection,而不是直接在高级语义特征上进行监督和 Loss 反传,这样就保证了最后恢复出来的特征图融合了更多 Low-Level 的 Feature,也使得不同 Scale 的 Feature 得到了融合,从而可以进行多尺度预测和 DeepSupervision。4 次上采样也使得分割图恢复边缘等信息更加精细。


  • ASPP


使用不同扩张率的扩张卷积,并进行特征结合,得到多尺度特征,同时得到全局信息和局部信息。


  • Attention


关注图像显著区域,将 U-Net 的浅层和对应的深层进行信息结合后,得到 Attention 的参数,再作用于当前深层,得到最终 Attention 的结果输出。


  • Non-local


特定层的卷积核在原图上的感受野(local)是有限的,Non-local 通过将空间中不同像素间的关系编码到当前层的输出,从而将全局信息加入到输出结果中,就能很好地解决 local 操作无法看清全局的情况,为后面的层带去更丰富的信息。



U-Net 结构(左上) Attention(左下) Non-local(右上) ASPP(右下)


影像楼块实例分割(Instance)


实例分割有两种主流方法,第一种是基于目标检测,在得到目标检测框之后再在框内做语义分割前景和背景,由于这种方法需要借助目标检测中的区域提议,因此该方法称为 Proposal-Based 方法。


另一种方法是,在语义分割图的基础上,将像素聚集到不同的实例上,这种被称为 Proposal-Free 方法。我们对两种主流方法进行了对比实验,由于楼块具有多样性、“矮胖结构”的特点,Proposal-Based 方法效果要优于 Proposal-Free 方法。


对于楼块数据而言,重要的表达内容是楼块的底座位置及其形状。然而由于影像拍摄视角问题,部分高楼在视觉上呈现斜射的效果,部分基座边缘被遮挡,为识别造成了极大的难度。


经过数据分析与推算,我们发现绝大多数的楼块底座形状是和楼顶形状一致的,因此我们采用了楼顶分割+楼顶到基座偏移量的多任务学习方案,将分割出的楼顶形状加上一个楼顶到基座的偏移向量,对基座的形状和位置进行了一个比较理想的还原。


多元素识别效果展示

针对卫星影像不同元素的图像特征与拓扑结构关系,我们设计了多个识别模型,包含普通道路识别、精细路网识别、地物分类识别、楼块识别等,作用于高德多种类别的数据更新。



普通道路识别(左上) 精细路识别(右上) 地物分类(左下) 楼块识别(右下)

未来展望 &挑战

  • 路网数据的准确/快速更新


用户在使用导航过程中可能会遇到一些场景:比如为什么这里有条新路却给导航了一条绕远的路?为什么导航了一条已经不能走的路?为什么本来这里可以掉头却还要往前多走几公里才能掉头?这些由路网数据错误导致的导航偏差,是我们未来需要解决的核心问题,也是业界的难题。未来我们期望通过视觉算法层面的优化,通过多采集源的融合预测,通过提前发现建设中道路等一系列手段,来快速感知到现实世界中发生的路网变化。


  • 数字城市中的楼块与 AOI 建设


对于数字城市来说,楼块和 AOI(兴趣区,Area Of interest)是重要的元素之一:如用户想要前往某个店铺,实际导航的到达点是店铺所在的楼块;用户想要前往某个小区的某个楼,实际导航的到达点是小区的入口,因此楼块与 AOI 的准确与完备直接影响到用户导航最后几百米的使用感受。同时结合最近的疫情防控,数字城市中的楼块和 AOI 信息可以对写字楼、小区等区域的疫情防控提供有力的数据支持。未来我们期望通过结合卫星影像的发现能力,进一步完善数字城市的数据建设,连接真实世界,让出行更美好。


本文转载自公众号高德技术(ID:amap_tech)。


原文链接


https://mp.weixin.qq.com/s/Cg2Sg5K15T1EjX_KYbsErw


2020-04-12 10:003829

评论 1 条评论

发布
用户头像
牛逼
2020-04-13 10:49
回复
没有更多了
发现更多内容

促进AI与会议场景全面融合,腾讯会议近1年AI功能用户量同比增长150%+

极客天地

绚星破局AI落地困境,四大业务重构企业智能生产力新范式

人称T客

PHP 如何利用 Opcache 来实现保护源码

伤感汤姆布利柏

如何在YashanDB中构建稳定可靠的数据备份体系

数据库砖家

如何在YashanDB中实现动态数据建模的利弊?

数据库砖家

深度解析YashanDB数据库事务管理机制

数据库砖家

烧钱却没转化?你可能忽略了这三个关键点

Wolink

跨境贸易 出海企业 海外营销推广 沃链Wolink 达人营销

如何在YashanDB中实现高效的数据检索和处理

数据库砖家

拥抱新一代 Web 3D 引擎,Three.js 项目快速升级 Galacean 指南

vivo互联网技术

前端 three.js

亚马逊商品列表API开发指南

tbapi

亚马逊API 亚马逊商品数据采集 亚马逊数据分析 亚马逊商品列表api

AI 英语写作 App的流程

北京木奇科技有限公司

AI英语学习 AI英语

如何在企业中实施YashanDB数据库:步骤与注意事项

数据库砖家

CST软件如何获得RCS曲线均值

思茂信息

rcs 仿真软件 电磁仿真 CST软件 CST Studio Suite

低代码“批量审批/审批意见”实操攻略,5 分钟上手

引迈信息

AI 英语口语陪练 APP的开发

北京木奇科技有限公司

软件外包公司 AI英语写作 AI英语

如何在YashanDB数据库中实现数据的持久化存储

数据库砖家

如何在YashanDB中实现高效的分布式事务管理?

数据库砖家

如何在YashanDB中实现高效的全文搜索功能?

数据库砖家

深度解析YashanDB数据库的查询语言与语法

数据库砖家

区块链U卡APP的开发流程

北京木奇科技有限公司

区块链开发 软件外包公司 web3开发

如何在云环境中部署YashanDB数据库的最佳实践

数据库砖家

鸿蒙5.0应用开发——V2装饰器@Monitor的使用

高心星

鸿蒙 装饰器 HarmonyOS5.0 V2装饰器

如何在YashanDB中实现数据安全性与可靠性:全面指导

数据库砖家

如何在YashanDB中实现数据分区和分片

数据库砖家

阿里巴巴商品详情API秘籍!轻松获取商品详情数据

tbapi

阿里巴巴商品详情接口 阿里巴巴数据采集 阿里巴巴API 阿里巴巴商品详情api

如何在YashanDB数据库中实现高效的备份策略

数据库砖家

大型命令行工具的设计技巧-以 docker 和 kubectl 为例

baiyutang

Go 编程

跨境电商如何通过海外舆情监测优化本地化策略

沃观Wovision

跨境电商 出海企业 沃观Wovision 舆情监测系统 海外舆情监测

程序员工作新趋势已到!担心AI会抢岗位?

秃头小帅oi

从AI代码生成,到真正的开发伙伴关系

伤感汤姆布利柏

如何在YashanDB数据库中实现数据实时更新

数据库砖家

卫星影像识别技术在高德数据建设中的探索与实践_大前端_高德技术_InfoQ精选文章