写点什么

谷歌首创基于云的 AI 自治系统,为数据中心自动降温

  • 2018-09-06
  • 本文字数:1813 字

    阅读完需:约 6 分钟

2016 年,DeepMind 联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。现在,他们将这个系统提升到一个新的水平:在数据中心运营专家的监督之下直接让 AI 系统控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

现实世界的很多最紧迫的问题变得越来越复杂,为它们寻求解决方案可能会让人不堪重负。在 DeepMind 和谷歌,谷歌认为,如果其能够将 AI 作为发现新知识的工具,那么就可以更容易得找到解决方案。

2016 年,谷歌联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。谷歌的想法很简单:即使是微小的改进也可以显著地节约能源,减少二氧化碳排放,从而有助于应对气候变化。

现在谷歌将这个系统提升到一个新的水平:谷歌不是通过人为的方式实现推荐系统,而是在数据中心运营专家的监督之下让谷歌的 AI 系统直接控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

它是怎么运作的

每隔五分钟,谷歌的 AI 系统就会从数千个传感器收集数据中心冷却系统的快照,并将其输入到谷歌的深度神经网络中,用以预测不同的潜在操作的组合将如何影响未来的能源消耗。然后,AI 系统将识别出哪些操作将会最小化能量消耗,同时又能满足安全约束。这些操作被发送回数据中心,数据中心的本地控制系统负责验证和执行它们。

这个想法源于使用 AI 推荐系统的数据中心专家的反馈。他们告诉谷歌,虽然推荐系统已经为他们提供了一些新的最佳实践——例如将冷却负载分散到更多而不是更少的设备上——但实现推荐仍然需要很多的运营工作量和监督。当然,他们想知道谷歌是否可能实现在没有人工干预的情况下实现类似的节能。

谷歌很高兴地说,答案是肯定的!

专为安全和可靠性而设计

谷歌的数据中心包含数千台服务器,用于支持谷歌搜索、Gmail 和 YouTube 等热门服务。确保它们可靠高效地运行是谷歌的关键任务。谷歌从头开始设计谷歌的 AI 代理和底层控制基础设施,并时刻考虑到安全性和可靠性问题,还使用了八种不同的机制来确保系统始终按预期运行。

谷歌已经实现的一个简单方法是预估不确定性。对于每一个潜在的操作——可能有数十亿个——谷歌的 AI 代理会计算出它们的信心指数。低信心指数的操作将不予考虑。

另一种方法是进行双层验证。谷歌将根据由数据中心运维人员定义的内部安全约束列表对 AI 计算得出的最佳操作进行审查。在指令从云端发送到物理数据中心后,本地控制系统就根据自己的约束集对指令进行验证。这种冗余检查可以确保系统保持在局部约束范围内,并且运维人员可以完全控制操作边界。

最重要的是,谷歌的数据中心运维人员始终控制着局面,可以随时选择退出 AI 控制模式。在这些情况下,控制系统将无缝地从 AI 控制转移到现场规则。

可以从下图了解谷歌开发的其他安全机制:

逐渐增长的节能

谷歌的原始推荐系统有运维人员进行审查和实现操作,而谷歌新的 AI 控制系统却直接自己实现了操作。考虑到安全性和可靠性问题,谷歌有目的地将系统的优化边界限制在较窄的操作体系中,这意味着在节能方面存在风险和回报之间的折衷。

尽管只有几个月的时间,这个系统已经实现了平均约 30%的持续节能,并有了进一步的预期改进。这是因为随着时间的推移,系统会因为数据越来越多而变得更好,如下图所示。随着技术的成熟,谷歌的优化边界也将得到扩展,从而实现更高效的节能。

这张图描绘了相对于历史基线的 AI 性能趋势。性能通过通用的工业冷却能效指标(kW/ton,每吨冷却对应的能量输入)来衡量。在 9 个月时间里,谷歌的 AI 控制系统性能从 12%的改进增加到大约 30%的改进。

谷歌的 AI 控制系统正在寻找更多新颖的管理冷却的方式,这些方法甚至让数据中心运维人员感到惊讶。谷歌数据中心运维人员 Dan Fuenffinger 说:“看到 AI 学会利用冬季条件并生成比普通水更冷的水,着实令人感到惊讶,这样可以降低冷却所需的能量。随着时间的推移,人工规则不会变得更好,但 AI 却可以“。

谷歌很高兴谷歌的 AI 控制系统能够安全可靠地运行,同时始终如一地实现节能。但是,数据中心只是个开始。从长远来看,谷歌认为有可能将这项技术应用到其他工业环境,并在更大规模的范围内应对气候变化。

查看英文原文: https://de ep mind.com/blog/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control/

感谢陈利鑫对本文的审校。

2018-09-06 19:002272
用户头像

发布了 731 篇内容, 共 475.0 次阅读, 收获喜欢 2008 次。

关注

评论

发布
暂无评论
发现更多内容

Spark中的累加器和广播变量

五分钟学大数据

spark 4月日更

用泡妞的逻辑理解23种常用设计模式?渣男直呼内行

北游学Java

Java 设计模式

Fl Studio真的不如Cubase或者Logic Pro等电音软件专业吗?

奈奈的杂社

编曲 电音 电音制作 中国电音 编曲宿主

CIAM的7个基本原则

龙归科技

安全性 用户 业务增长

新的物联网技术应用有哪些

cdhqyj

互联网 物联网 通信 计算机

新思科技成为CVE编号授权机构 向公众发布更准确、实时的漏洞信息

InfoQ_434670063458

新思科技 CVE 软件质量与安全

嘿,朋友!和你讲讲这15年来我的成长吧

亚马逊云科技 (Amazon Web Services)

这里有一份2021年Java面试必备的《并发编程》学习资料,你要还是不要?

Java架构之路

Java 程序员 架构 面试 编程语言

梦里花落知多少,网络抖动逃不了

阿里云基础软件团队

一份秀出新天际的SpringCloudAlibaba笔记,把微服务玩的出神入化

Java 编程 程序员 架构 微服务

【软件推荐】TOP级YouTube视频下载工具2021

科技猫

软件 分享 工具软件 视频 youtube

一周信创舆情观察(3.29~4.4)

统小信uos

火爆全网!万字精华总结“银四Java复习笔记”(共计22个技术专题)

比伯

Java 架构 面试 程序人生 计算机

大厂Offer收割机:Netty处理写事件之连环四问,你能抗住吗?

Java架构师迁哥

Github限时开放!阿里内部强推的《微服务容器化参考指南》简直太牛了!

Java架构之路

Java 程序员 架构 面试 编程语言

通俗讲解分布式锁,这次你一定能懂!

Java架构师迁哥

全面提升鸡群产能!Newcher智慧养鸡场解决方案剖析

Rancher

类加载器和双亲委派模型

hepingfly

Java ClassLoader 类加载器 双亲委派模型

英特尔陈葆立:至强傲腾强强联手,实现1+1>2

E科讯

阿里P9这几个提高代码运行效率的小技巧我一直在用

Java架构师迁哥

19张图带你梳理SpringCloud体系中的重要技术点!

Java架构师迁哥

你可能不是真的懂let和const

前端树洞

JavaScript ecmascript 大前端 ES6 4月日更

Notion免费搭建个人网站,使用Notion又多了一个理由

彭宏豪95

GitHub Notion 写作 博客 4月日更

SparkStreaming流计算实战

小舰

4月日更

AI 事件驱动场景 Serverless 实践

阿里巴巴云原生

人工智能 Serverless 容器 云原生 消息中间件

平面设计之PS(中)

空城机

PhotoShop ps 4月日更

腾讯专家连夜肛出来17大专题30W字的Java面试手册!

码农之家

Java 编程 程序员 互联网 面试

【LeetCode】寻找旋转排序数组中的最小值 IIJava题解

Albert

算法 LeetCode 4月日更

一位五年Java开发经验程序员的拼多多/蚂蚁金服/百度面经分享!

Java架构之路

Java 程序员 架构 面试 编程语言

NoSQL数据库兄弟会

大数据技术指南

sql 4月日更

谷歌首创基于云的AI自治系统,为数据中心自动降温_AI&大模型_DeepMind_InfoQ精选文章