2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

谷歌通过定制的深度学习模型升级了其语音转文字的服务

  • 2018-05-22
  • 本文字数:1510 字

    阅读完需:约 5 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

一个月前,谷歌宣布在源于 Magenta 项目的文字转语音(Text-to-Speech,简称TTS)技术上取得代际突破,接着该公司又对其语音转文字(Speech-to-Text,简称STT)API 云服务进行了重大升级。更新后的服务利用语音转录的深度学习模型,根据特定用例量身定制:短语音命令、打电话或视频,在所有其他上下文中都有一个默认模型。如今,升级后的服务可以处理120 种语言以及不同模型可用性和功能级别的变体。商业应用范围包括电话会议、呼叫中心和视频转录。转录的准确性在有多个扬声器和明显背景噪音的情形下有了改进提高。

另外两个因素构成了本次升级。标准服务水平协议(the standard service level agreement,简称SLA)现在承诺有99.9% 的可用性。该服务含有一种新机制来标记转录工作并向谷歌团队提供反馈。

专用模型是根据音频媒体的特点来采样,从而产生带宽 %E5%92%8C%E4%BF%A1%E5%8F%B7%E6%8C%81%E7%BB%AD%E6%97%B6%E9%97%B4%E3%80%82%E7%94%B5%E8%AF%9D%E9%9F%B3%E9%A2%91%E7%9A%84%E9%87%87%E6%A0%B7%E9%A2%91%E7%8E%87%E6%98%AF8Khz%EF%BC%8C%E5%9B%A0%E6%AD%A4%E9%9F%B3%E9%A2%91%E8%B4%A8%E9%87%8F%E8%BE%83%E4%BD%8E%EF%BC%8C%E8%80%8C%E6%9D%A5%E8%87%AA%E8%A7%86%E9%A2%91%E7%9A%84%E9%9F%B3%E9%A2%91%EF%BC%8C%E9%87%87%E6%A0%B7%E9%A2%91%E7%8E%87%E9%80%9A%E5%B8%B8%E6%98%AF16Khz%E3%80%82%E5%9B%A0%E6%AD%A4%EF%BC%8C%E9%9C%80%E8%A6%81%E9%92%88%E5%AF%B9%E6%AF%8F%E7%A7%8D%E5%AA%92%E4%BD%93%E7%B1%BB%E5%9E%8B%E8%BF%9B%E8%A1%8C%E4%BC%98%E5%8C%96%E7%9A%84%E6%A8%A1%E5%9E%8B%E3%80%82">https://en.wikipedia.org/wiki/Bandwidth_(signal_processing) 和信号持续时间。电话音频的采样频率是 8Khz,因此音频质量较低,而来自视频的音频,采样频率通常是 16Khz。因此,需要针对每种媒体类型进行优化的模型。

众包真实世界音频样本是谷歌改进其模型战略的核心,随着所谓数据记录的可选程序的发布,用户可以选择跟谷歌共享他们的音频,以帮助改进模型。数据记录的启用让用户可以访问具有更好性能的增强模型。谷歌宣布, 与标准电话模型相比,词汇错误减少了54%,而对于增强视频模型,错误减少了64%。

最佳实践而言,谷歌建议使用无损耗编码器(如 FLAC )压缩后的音频数据,采样频率为 16Khz,避免任何音频预处理,比如降噪或自动增益控制。

词汇错误减少不是提升语音转文字整体质量的唯一因素。标点符号的预测仍然是语言转录面临的重要挑战。谷歌的语音转文字API 现在能够给转录后的文本添加标点符号,进一步提高了转自长音频序列的文本的可读性。这种自动添加标点符号的功能是利用了 LSTM 神经网络模型。

正如最近来自谷歌研究(Google Research)关于语音合成和语音识别的研究成果显示,用于语音转文字的深度学习经常是基于序列到序列(sequence-to-sequence,也可简写为Seq2seq)的神经网络模型,这些模型也可以应用于机器翻译和文本摘要。简而言之, Seq2seq 模型使用第一个 LSTM 对音频输入进行编码,第二个 LSTM 以输入序列为条件,对数据进行解码,并把数据转换成转录文本。

其他现有的语音转文字服务包括支持29 种语言微软语音识别 API、支持 7 种语言的 IBM Watson API ,以及 2017 年 11 月发布亚马逊Transcribe ,到目前为止,其只支持美式英语和西班牙语。来自佛罗里达技术学院(the Florida Institute of Technology)对其中这些服务的比较显示,谷歌服务API 的错误率较低。另一组比较测试强调了语音转录服务延迟的重要性。

阅读英文原文: Google Upgrades Its Speech-to-Text Service with Tailored Deep-Learning Models

2018-05-22 19:001642
用户头像

发布了 199 篇内容, 共 89.7 次阅读, 收获喜欢 295 次。

关注

评论

发布
暂无评论
发现更多内容

数字化助力,聚道云软件连接器实现软件公司人事信息自动同步

聚道云软件连接器

案例分享

2024 AIGC 应用层十大趋势;iPhone 遭史上最复杂攻击!丨 RTE 开发者日报 Vol.119

声网

构建企业级AI中台,实现业务场景价值闭环

ModelWhale

AI 数字化转型 中台架构 AI中台

医疗设备管理二维码:扫码查看使用说明、填写消毒记录

草料二维码

二维码 草料二维码 医疗设备 医疗设备管理

如何实现APP安全加固?加固技术、方法和方案

Geek_66e2f3

阿里巴巴中国站1688商品详情API实时数据获取:从零基础到精通的全程指南

Noah

NFT 项目入驻 NFTScan Site 流程说明

NFT Research

NFT NFT\ NFTScan nft工具

软件测试开发/全日制丨测试用例-黑盒测试方法论 学习笔记

测试人

软件测试

前端技术-调试工具(上)

不在线第一只蜗牛

前端 框架 前端技术

数云引领,神州数码荣获CSA2023安全创新奖

科技热闻

lazada商品详情数据接口(lazada.item_get)丨lazada API接口

tbapi

lazada商品详情数据接口 lazada商品数据接口 lazada商品API接口 lazada API接口

3 分钟为英语学习神器 Anki 部署一个专属同步服务器

硅基新手村

基于ETLCloud的MySQL到SqlServer实时同步解决方案

RestCloud

MySQL 数据同步 ETL SqlServer

企业数字化转型,应该先从哪开始?

优秀

企业数字化转型

通过聚道云软件连接器实现销帮帮软件与i人事软件的智能对接

聚道云软件连接器

案例分享

Jira停售Server版在即,飞书项目或成为最佳选择

科技热闻

揭秘阿里巴巴:如何通过API实时捕获中国市场商品数据

Noah

和鲸携手上海交大医学院张维拓老师,混合式教学聚焦R语言医学数据分析,从图表开始复现顶刊论文

ModelWhale

人工智能 数据分析 R语言 代码复现 医学

玩转低代码可视化平台,软件开发如此简单!

互联网工科生

软件开发 低代码 可视化开发 JNPF

代码出错了,IDE竟然不报错?太诡异了....

互联网工科生

ide 代码 ChatGPT

分布式日志追踪ID实战 | 京东物流技术团队

京东科技开发者

如何通过技术手段使LED显示屏更加节能?

Dylan

概念 节能 LED显示屏 市场

喜讯丨上海和今信息科技有限公司入选2023年上海市专精特新中小企业名单

ModelWhale

人工智能 科技 专精特新企业

Spring 应用合并之路(一):摸石头过河 | 京东云技术团队

京东科技开发者

如何做代币分析:以 OCEAN 币为例

Footprint Analytics

区块链 加密货币 代币

数据库内核那些事|细说PolarDB优化器查询变换:IN-List变换

阿里云瑶池数据库

数据库 List 阿里云 云原生 adb

谷歌通过定制的深度学习模型升级了其语音转文字的服务_Google_Alexis Perrier_InfoQ精选文章