写点什么

Intel 开源深度学习库 BigDL:Non GPU on Spark

  • 2017-02-03
  • 本文字数:1803 字

    阅读完需:约 6 分钟

Intel 开源了基于 Apache Spark 的分布式深度学习框架 BigDL。BigDL 借助现有的 Spark 集群来运行深度学习计算,并简化存储在 Hadoop 中的大数据集的数据加载。

BigDL 适用的应用场景主要为以下三种:

  1. 直接在 Hadoop/Spark 框架下使用深度学习进行大数据分析(即将数据存储在 HDFS、HBase、Hive 等数据库上);
  2. 在 Spark 程序中 / 工作流中加入深度学习功能;
  3. 利用现有的 Hadoop/Spark 集群来运行深度学习程序,然后将代码与其他的应用场景进行动态共享,例如 ETL(Extract、Transform、Load,即通常所说的数据抽取)、数据仓库(data warehouse)、功能引擎、经典机器学习、图表分析等。

运行于 Spark 集群上 Spark 是被工业界验证过的,并有很多部署的大数据平台。BigDL 针对那些想要将机器学习应用到已有 Spark 或 Hadoop 集群的人。

对于直接支持已有 Spark 集群的深度学习开源库,BigDL 是唯一的一个框架。

BigDL 可以直接运行在已有 Spark 集群之上,和 Spark RDD, DataFrame/DataSet 直接接口,不需要额外的集群数据加载,从而大大提高从数据抽取到深度学习建模的开发运行效率。用户不需要对他们的集群做任何改动,就可以直接运行 BigDL。BigDL 可以和其它的 Spark 的 workload 一起运行,非常方便的进行集成。

BigDL 库支持 Spark 1.5、1.6 和 2.0 版本。BigDL 库中有把 Spark RDDs 转换为 BigDL DataSet 的方法,并且可以直接与 Spark ML Pipelines 一起使用。

Non GPU on Spark

BigDL 目前的测试结果是基于单节点 Xeon 服务器的(即,与主流 GPU 相当的 CPU),在 Xeon 上的结果表明,比开箱即用的开源 Caffe,Torch 或 TensorFlow 速度上有“数量级”的提升,最高可达到 48 倍的提升(Orders of magnitude ,up-to 48X today)。而且能够扩展到数十个 Xeon 服务器。

为什么创建一个默认情况下不使用 GPU 加速的深度学习框架?对于英特尔来说,它是促进下一代 CPU 机器学习的策略的一部分。

Spark 传统上不是一个 GPU 加速的产品,虽然目前 IBM 和 Databricks(于去年底)有在自己的集群上增加支持 GPU 加速的 Spark 服务;其实使用 GPU 也将是一种趋势。从另一方面来说,BigDL 是给开发者的一个福利,理论上,使用现有软件会比移植到 GPU 架构上的工作量小很多。比如说英特尔采用 GPU-a PCIe 附加卡的形式封装了 Xeon Phi 处理器,由 Xeon Phi 插件卡组成的系统可以通过简单地更换或添加卡来升级或扩展,而不用更换整个机架。

性能上的优化措施

与使用 GPU 加速来加速过程的其他机器学习框架不同,BigDL 使用英特尔数学内核库(Intel MKL)来得到最高性能要求。在性能提高策略上,它还针对每个 Spark task 使用了多线程编程。

对于模型训练,BigDL 使用了在多个执行器中执行单个 Spark 任务的同步小批量 SGD(Stochastic Gradient Descent)。每个执行器运行一个多线程引擎并处理一部分微批次数据。在当前版本中,所有的训练和验证数据都存储到存储器中。

BigDL 使用 Scala 开发,并参考了 Torch 的模型。像 Torch 一样,它有一个使用 Intel MKL 库进行计算的 Tensor 类。Intel MKL(Math Kernel Library)是由一系列为计算优化过的小程序所组成的库,这些小程序从 FFT(快速傅立叶变换)到矩阵乘法均有涉及,常用于深度学习模型训练。Module 是另一个从 Torch 借鉴而来的概念,它的灵感来自 Torch 的 nn package。Module 代表单独的神经网络层、Table 和 Criterion。

易用性上的优化

BigDL 的 API 是参考 torch 设计的,为用户提供几个模块:

  1. Module: 构建神经网络的基本组件,目前提供 100+ 的 module,覆盖了主流的神经网络模型。
  2. Criterion:机器学习里面的目标函数,提供了十几个,常用的也都包含了。
  3. Optimizer:分布式模型训练。包括常用的训练算法(SGD,Adagrad),data partition 的分布式训练。

用户只需定义好模型和目标函数,就可以放到 Optimizer 里面去训练。对于数据预处理,BigDL 提供了一个叫 Transformer 的接口封装,并且提供了很多图像、自然语言处理方面的预处理算法的实现。另外还提供很多示例程序,让用户了解怎么使用 BigDL。例如怎么训练模型,怎么和 Spark 其它模块一起工作。

BigDL 提供了一个 AWS EC2 镜像和一些示例,比如使用卷积神经网络进行文本分类,还有图像分类以及如何将在 Torch 或 Caffe 中预训练过的模型加载到 Spark 中进行预测计算。来自社区的请求主要包括提供对 Python 的支持,MKL-DNN(MKL 的深度学习扩展),faster-rcnn,以及可视化支持。

2017-02-03 18:004607
用户头像
Tina InfoQ高级编辑

发布了 1693 篇内容, 共 1368.8 次阅读, 收获喜欢 4027 次。

关注

评论

发布
暂无评论
发现更多内容

初创企业CRM系统解决方案

低代码小观

初创公司 企业微信 企业管理系统 CRM系统 客户关系管理系统

谷歌云对象存储攻防

火线安全

安全攻防 对象存储 云安全

【性能测试工具lmbench】快来测测你的系统可以打几分

优麒麟

Linux 开源 系统管理 优麒麟

模块一作业

HZ

架构实战营

直播预告 | PolarDB-X 动手实践系列——用 PolarDB-X + Flink 搭建实时数据大屏

阿里云数据库开源

数据库 阿里云 开源 分布式 polarDB

Apache Flink 在国有大型银行智能运营场景下的应用

Apache Flink

大数据 flink 编程 流计算 实时计算

天翼云虚拟IP地址及其在高可用集群中的应用

天翼云开发者社区

虚拟机

【OpenHarmony移植案例与原理】XTS子系统之应用兼容性测试用例开发

华为云开发者联盟

测试 OpenHarmony XTS 应用兼容性测试

19 条有效的跨端 cpp 开发经验

阿里巴巴终端技术

cpp 跨端开发

Go性能优化小技巧

jinjin

Go 性能优化

Tapdata加入PolarDB开源数据库社区

阿里云数据库开源

数据库 阿里云 开源 开源数据库 polarDB

CSDN 数据库Meetup|OceanBase 技术专家讲述 SQL 的一生

OceanBase 数据库

oceanbase OceanBase 开源 OceanBase 社区版 OceanBase社区

不仅仅是一把瑞士军刀 —— Apifox的野望和不足

Liam

Java 程序员 Jmeter Postman swagger

明确生态边界的钉钉,让ToB从业者们松了口气

ToB行业头条

阿里本地生活端智能架构设计与技术探索

阿里巴巴终端技术

端智能

网络安全 Kali web安全 基于SMB协议收集信息

学神来啦

Linux 运维 网络安全 WEB安全 kali Linux

高性能的连接管理和数据路由组件,OceanBase 生态工具 ODP 详解

OceanBase 数据库

oceanbase OceanBase 开源 OceanBase 社区版

巧用对象存储回源绕过SSRF限制

火线安全

Web 云安全 web漏洞

物理裸机配置如何转换为天翼云云主机配置

天翼云开发者社区

云主机

想让DBA瞬间崩溃,那就让他去做SQL性能优化

华为云开发者联盟

数据库 sql 遍历 存储 优化SQL

实现简易的 Vue 响应式

CRMEB

2022年作为一个中年程序员写给35岁的自己

Linux服务器开发

c++ 程序员 架构师 Linux服务器开发 Linux后台开发

如何搭建B端产品帮助中心

小炮

帮助中心 B端用户

KubeVela: 如何用 100 行代码快速引入 AWS 最受欢迎的 50 种云资源

阿里巴巴云原生

关于黑帕云用户迁移明道云的详细说明

明道云

华为云企业级Redis揭秘第17期:集群搭载多DB,多租隔离更降本

华为云数据库小助手

GaussDB GaussDB ( for Redis )

Go Data Structures: Interfaces [中译]

hyx

源码 Go 语言

新思科技加速安全软件开发,推出Code Sight插件标准版

InfoQ_434670063458

软件开发 新思科技 可信软件 IDE环境 Code Sight

3步排查,3步优化,探针性能损耗直降44%

TakinTalks稳定性社区

Java 性能分析 探针 性能提升 性能损耗

XSS跨站脚本攻击漏洞修复技巧

喀拉峻

网络安全

架构实战营 第6期 模块一课后作业

火钳刘明

#架构实战营 「架构实战营」

Intel开源深度学习库BigDL:Non GPU on Spark_语言 & 开发_Tina_InfoQ精选文章