写点什么

Honeycomb - 调试复杂系统的工具

  • 2016-11-07
  • 本文字数:1660 字

    阅读完需:约 5 分钟

Honeycomb 是用于观察和关联分布式系统中各事件的工具。它的方法与现有工具(例如 Zipkin )不同。Honeycomb 由原有的单一请求跟踪模型转变为更自由形式的模型,能够跨层 (layers)、跨维度 (dimensions) 地收集和查询数据。

Honeycomb 与 Zipkin 这样的软件有什么区别?Zipkin 是基于 Google Dapper paper 的分布式跟踪系统,由Twitter 编写和开放源代码。InfoQ 近日与Honeycomb 联合创始人Charity Majors 联系,了解到该产品的更多信息。Majors 指出,与使用全球唯一的UUID 进行请求跟踪不同,“对大家来说通常更有用的是某种用户ID 或应用程序ID,以及其他类型的ID。这些请求ID 便于将具有您可能想要计算或聚合的共同特征进行分组。”

这在实践中意味着什么?基于如Zipkin 之类的跟踪工具的请求,假设每个请求都附有唯一的ID。从请求进入系统的时间起,ID 通过各种子系统调用(可用于微服务)来传递,而子系统调用是由初始调用的结果触发的。如果在每个步骤都记录下此ID,并且设定中心区域来聚合和索引这些日志,那么在请求ID 已知的前提下,在系统中搜索和跟踪特定请求将变得很容易。这种日志聚合器的一个典型例子是ELK( Elasticsearch/Logstash/Kibana )。

Honeycomb 打破了这种模式,尽量在每个级别分别获取数据(如负载均衡器、微服务和数据库),标记数据,便于用户今后对这些数据进行混合匹配(mix-an-match)和即时查询 (ad-hoc queries)。Majors 解释说,Honeycomb 采用这种方法是因为跟踪本身给你留下一个亟待解决的问题。这个问题就是“哪些是有代表性,值得首先研究的请求”。一旦用 Honeycomb 展示数据,用户可以跨系统、跨时间,将不同层的数据联系整合,进行运算,从而理解它的性能。例如,跨越多个系统的请求响应时间的增加可能是由于来自多个因素(包括时间)的集体效应。这不利于请求跟踪,因为请求一般代表的是给定时间段内相关事件的单个线程。

数据一般可以通过 API 调用发送到 Honeycomb。以下示例表示如何用 API 调用来记录 Web 请求数据:

复制代码
curl https://api.honeycomb.io/1/events/Quickstart -X POST \
-H "X-Honeycomb-Team: YOUR_WRITE_KEY" \
-d '{"status":200,"path":"/docs/","latency_ms":13.1,"cached":false}'

在这个例子里, “-d”参数可用于获取 JSON 对象。这个 JSON 对象具有便于以后查询的任何应用程序特定信息。数据收集为一系列事件,对于其中每个事件都应该进行跟踪。这些事件可以捆绑成名为“数据集”的单个实体。Honeycomb 可以通过所谓的“连接器”与应用程序集成。连接器是从特定软件中提取数据并将其发送到Honeycomb 的适配器。用户还可以使用 SDK 以及名为 honeytail 的工具将数据从现有日志集成到 Honeycomb。

为了:给正在收集的数据添加上下文,Honeycomb 还标记各事件是由谁触发的:是操作员还是像计划任务 cron 之类的什么(部署、脚本或一次性动作)。这些操作垂直排列,上面附加了一些信息,例如谁运行脚本以及指向部署代码的链接。这有点类似于 Etsy 的运营团队使用 Grap hite 的情况(但 Graphite 缺乏相应的背景信息)。

Honeycomb 收集了大量数据,那它是如何处理大规模查询的呢?Majors 说,由于接近 100% 用户发出的查询都是关于最近一两个星期的,他们现在正专注于近期的调试任务,以便于采用有效的抽样保留技巧。

为了处理大量的数据,Honeycomb 使用自己的列存储:

Majors 说,我们开始构建 Honeycomb 时研究了大量现有的解决方案,但没有一个能完美解决问题。我们最终发现,绝大多数的预构建解决方案都需要对功能性进行权衡,在那些我们不需要的功能(例如事务)和牺牲那些我们认为至关重要的功能(例如能够快速访问原始输入事件)之间取舍。

Honeycomb 目前还不支持与其他告警系统集成,如 Nagios、Zabbix、PagerDuty。目前只有受邀请者可以注册该服务。

查看英文原文 Honeycomb - A Tool for Debugging Complex Systems


感谢冬雨对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-11-07 18:003280
用户头像

发布了 22 篇内容, 共 61028 次阅读, 收获喜欢 3 次。

关注

评论

发布
暂无评论
发现更多内容

性能测试技术笔记(二):如何准备测试环境和数据

老张

性能测试

再快一点?动态内容如何加速

蔡农曰

程序员 互联网

2023-01-03:超过5名学生的课。编写一个SQL查询来报告 至少有5个学生 的所有班级,返回结果不限顺序。请问sql语句如何写? +---------+ | class | +-----

福大大架构师每日一题

数据库 sql 福大大

基于 EventBridge API Destination 构建 SaaS 集成实践方案

阿里巴巴云原生

阿里云 云原生 EventBridge

中国北京|HICOOL 2023 全球创业大赛

科兴未来News

Hicool 海外 #双创赛事#

下载速度不尽人意,华为云CDN来助力,尽享高速体验!

i生活i科技

CDN

下载速度慢怎么办?使用华为云CDN,让网速更快更稳

i生活i科技

CDN

华为云弹性负载均衡服务,赋能现代企业加速发展

i生活i科技

ELB

模块四作业

张贺

架构训练营

外包学生管理系统详细架构设计文档

Geek_7d539e

vivo 实时计算平台建设实践

vivo互联网技术

大数据 flink 实时计算

如何导入本地数据?

Towify

Wallys/QCN9074 WiFi 6E Card OpenWRT, IPQ6010,802.11ax/Support:QUECTEL RM500Q-GL/QCN9074 11ax 4x4 6G M.2

wallysmeng

架构训练营模块三作业

gigifrog

架构训练营

阿里云 ACK One 多集群管理再升级:GitOps 多集群持续集成,统一报警管理

阿里巴巴云原生

阿里云 云原生 容器服务

华为云CDN,多场景网络加速服务,为企业发展强势赋能

i生活i科技

CDN

为什么说IO密集型业务,线程数是CPU数的2倍?

Java永远的神

程序员 程序人生 后端 cpu io

RelativeLayout(相对布局)

芯动大师

Android Studio padding margin

云存储生态构建的技术基因和最佳实践

云布道师

阿里云 云存储

创业邦2022中国未来独角兽100强揭晓:总估值超3000亿元,累计融资总额达685亿元;红杉中国、顺为资本成年度最佳捕手

创业邦

机器学习服务活体检测算法荣获CFCA权威安全认证

HarmonyOS SDK

HMS Core

云原生技术在离线交付场景中的实践

北京好雨科技有限公司

Kubernetes 云原生交付 离线交付

SpringBoot 自动装配原理,一文掌握!

程序员小毕

源码 程序员 面试 springboot 自动装配

一些Web安全漏洞

穿过生命散发芬芳

HTTP 1月月更

如何用弹出对话框实现登录页非空提示?

Towify

爱奇艺:基于龙蜥与 Koordinator 在离线混部的实践解析 | 龙蜥技术

阿里巴巴云原生

阿里云 云原生 Koordinator

网络拥堵?上网体验差,还不赶紧看看华为云CDN!

i生活i科技

CDN

Java高手速成│实战:应用数据库和GUI开发产品销售管理软件(2)

TiAmo

数据库 Java、 JDBC

市面上到底有没有免费的云渲染平台?

Renderbus瑞云渲染农场

云渲染 云渲染平台 免费云渲染平台

架构实战营 - 写出外包学生管理系统的架构文档

huiwen

架构实战营

Honeycomb - 调试复杂系统的工具_DevOps & 平台工程_Hrishikesh Barua_InfoQ精选文章