写点什么

Apache Kylin 发布新版流处理引擎

  • 2016-11-13
  • 本文字数:2027 字

    阅读完需:约 7 分钟

Apache Kylin 在 1.5.0 推出了从流数据进行准实时(Near Real Time)处理功能,可以直接从 Apache Kafka 的主题(Topic)中消费数据来构建 Cube。Apache Kylin 1.5.0 的流处理是一次实验性的探索,它打破了以往只能从 Apache Hive 表构建 Cube 的局限,将数据从产生到可查询的延迟从小时级降低到了分钟级,满足了一些对实时性要求比较高的场景;但它在实现上存在一些局限︰

  • 不可扩展︰ 由于是利用单个 Java 进程(而不是利用某种计算框架)对数据做处理,当遇到流数据高峰时,可能由于资源不足而导致构建失败 ;
  • 可能会丢失数据︰ 由于使用一个起始时间 + 结束时间在 Kafka 队列中使用二分查找近似地寻找消息的偏移量 (offset),过早或过晚到达的消息将会被遗漏,从而使得查询结果有误差 ;
  • 难以监控︰ 用于构建的任务是单独通过 shell 脚本执行的,而不是像其它 Cube 那样由任务引擎统一调度和执行,所以这些任务是在 Web 界面和 REST API 上都无法查询到的,使得用户无法方便地使用工具进行监控和管理;
  • 其它︰ 必须持续执行,如果有系统宕机将会造成某些时间窗口的任务没有被执行,从而必须依靠管理员手动恢复;如果宕机时间较长,管理员不得不将长时间窗口切成多个小时间窗口依次来恢复,非常繁琐 。

为了克服这些限制,Apache Kylin 团队基于 Kafka 0.10 的 API,开发了新版的准实时流式处理,它已经在内部测试了一些时间,目前正在公开测试中。

新版流式构建是在Kylin v1.5 的"可插拔 "架构下的一个完美实现︰ 将Kafka 主题视为一种数据源,实现相应的适配器,将数据先抽取、转换和保存到 HDFS,接下来使用各种Kylin 的构建引擎(MR/Spark 等)对数据进行并行计算 。图 1 是高层次的架构图。

Kylin 的 Kafka 适配器参考了 kafka-hadoop-loader 的思路和部分代码, 将 Kafka 主题抽象成 Hadoop 输入文件格式(InputFileFormat),为主题的每个分区(partition)分配一个 Mapper 消费数据 ; 之后 Kylin 将利用现有框架进行并行处理,从而使得方案变得可扩展且具有容错性。

要解决"数据丢失"问题,Kylin 将开始 / 结束消息的偏移量(offset)计入了每个 Cube segment,并使用偏移量作为分区值 ,offset 是顺序递增的且不能有重叠和遗漏(如果主题有多个分区,使用各分区偏移量之和作分区值); 这将确保没有数据丢失,一个消息只会被消费一次。晚到达的消息会被稍后的 segment 统计进来;每个 Segment 有"最早时间”和"最晚时间"; 当用户按时间条件查询时,Kylin 将扫描与查询时间范围相匹配的所有段。图 2 解释了这个设计。

上图中有三个 segment,它们的 offset 依次连续且无重叠(左包右闭),Seg[100-400] 中的消息时间跨度是 1:04 – 1:11,Seg[400 - 2000] 的时间跨度是 1:08 – 1:40;当用户要查询 1:10 的统计信息时,Kylin 发现这两个 Segment 都可能有这个时间的消息,故而会扫描这两个 Segment 然后再次做汇总计算。

新版流计算引擎也进行其它一些更改和增强︰

  • 允许同时构建 / 合并多个 segment,前后的构建任务都是独立的
  • 自动从前一个 segment 或从 Kafka 寻找消息的开始及结束的 offset
  • 支持嵌入格式(结构化)的 JSON 消息
  • 增加了触发流式构建的 REST API
  • 增加了来检查和部分填补 segment 空洞的 REST API

内部的集成测试结果初步验证了当初的目标 ︰

  • 可伸缩︰ 它能够在一次构建中轻松处理上亿条消息 ;
  • 灵活︰ 可以在任何时候,以你期望的频率触发构建,例如︰ 在白天每隔 5 分钟触发一次, 在夜间将频率降低到每个小时,在需要做的维护可以随时暂停 ; 由于是 Kylin 管理所有主题的 offset,再恢复时它可以自动从上一次的结束位置继续 ;
  • 稳定︰ 稳定性大大提高,在上一版中经常发生的 OutOfMemory 错误再没有出现过;
  • 易于管理︰ 用户可通过 Kylin 的"Monitor"页面或 REST API 检查所有构建任务的状态 ;
  • 构建性能︰相比于前一版构建时间略长(因为有 Hadoop 任务的调度),但延迟依然在可接受的分钟级别。

在一个小规模的测试群集 (8 台 AWS 实例,消费 Twitter Sample 消息流) 中,创建一个有 9 个 维度和 3 个度量的 Cube, 每秒约一万条消息,当构建间隔是 2 分钟的时候,平均每次构建需 3 分钟 ; 当构建间隔是 5 分钟的时候,平均每次构建需要 4 分钟 ; 这里是几个测试中的截图 ︰

总结,这是比前一版本相比更加健壮和完善的流数据 OLAP 解决方案。现在你可以从 Apache Kylin 的下载页面下载到 1.6.0-SNAPSHOT 的二进制包,然后按照此教程生成第一个流式Cube。

作者介绍:

史少锋,Kyligence 技术合伙人& 资深架构师 Apache Kylin 核心开发者和项目管理委员会成员(PMC),专注于大数据分析和云计算技术。曾任eBay 全球分析基础架构部大数据高级工程师,IBM 云计算部门软件架构师;曾是IBM 公有云Bluemix dev&ops 团队核心成员,负责平台的规划、开发和运营。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-11-13 18:004224

评论

发布
暂无评论
发现更多内容

SpreadJS 纯前端表格控件应用案例:集成 Odoo提升企业ERP表格功能

葡萄城技术团队

开源 SpreadJS Odoo

丐帮,少林,明教,武当!看看你数据分析的技能属于哪一派?

程序员生活志

错误的存储方案正吞噬你的成本

jinjin

"工科生"的浪漫 百度大脑语言与知识技术峰会在七夕向你发出参会邀请

百度大脑

学习的深度 & 深度的学习

北风

学习

一个虚拟世界里栽树的公司及其启示

郭华

技术 商业模式 电影

四种主要的 IO 模型

一盐难进

Netty io 网络

Python3 for ... else ...陷阱

wangkx

Python Python PEP

大厂面试必读,JAVA进阶神书《深入理解Java虚拟机》第三版更新内容全曝光!

华章IT

JVM 虚拟机 周志明 Java虚拟机 jvm调优

搭载十代酷睿i7处理器,这台ROG冰刃4新锐拥有媲美台式游戏电脑的性能

最新动态

Spring 为啥默认把bean设计成单例的?这篇讲的明明白白的

程序员生活志

为啥PHP in_array(0,['a', 'b', 'c']) 返回为true?

架构精进之路

php 弱类型语言

吃透Laravel的Ioc容器

书旅

laravel 容器 ioc

影响音视频延迟的关键因素(一):流媒体系统

ZEGO即构

TCP udp RTC HLS RTMP

跟我一起基于Karma搭建一个测试环境(下)

Jack Q

大前端 测试框架 Karma

2w字 + 40张图带你参透并发编程!

苹果看辽宁体育

Java 后端 并发

Flink所需组件-1

小知识点

scala 大数据 flink 流计算

ST在keil下开发时候文件options配置的一些小技巧

良知犹存

嵌入式

一文吃透PHP进程信号处理

书旅

php Linux 信号

写代码爬取了某 Hub 资源,只为撸这个鉴黄平台!

程序员生活志

教程 Hub 资源

系统不可用总结

不在调上

高效程序员的45个习惯:敏捷开发修炼之道(3)

石云升

读书笔记 敏捷开发 无限游戏

《精益创业》摘要

孙苏勇

书摘 精益创业

为什么一旦自己创业了,很难再回到公司去坐班?

北柯

创业 互联网 创业心态 上班 上班族

nginx 报错 accept4 () failed (24:Too many open files)

Java联盟

nginx

云原生架构的基石

soolaugust

Docker 架构 Kubernetes 容器 云原生

大数据技术发展(二):Hadoop 技术生态圈的发展

cristal

Java 大数据 hadoop hadoop3

“庆俞年”大战,真正受损的不是李国庆

北柯

创业 合伙人 创业者 互联网人 当当网

nginx报错worker_connections are not enough

Java联盟

nginx

草脸识别,AI泡沫还是皇冠明珠?

郭华

人工智能 AI 商业 解决方案

有一种自我欺骗,叫只为孩子

zhoo299

随笔杂谈 家庭

Apache Kylin发布新版流处理引擎_语言 & 开发_史少锋_InfoQ精选文章