10 月 23 - 25 日,QCon 上海站即将召开,现在购票,享9折优惠 了解详情
写点什么

Apache Kylin 的 Top-N 近似预计算

  • 2016-08-07
  • 本文字数:1887 字

    阅读完需:约 6 分钟

Apache Kylin 是一个开源的分布式分析引擎,提供 Hadoop 之上的 SQL 查询接口及多维分析(OLAP)能力以支持超大规模数据。它能在亚秒内查询巨大的数据集 。本文将详细介绍 Apache Kylin 1.5 中的新功能: Top-N 预计算。

大家都听过二八定律,这是在很多领域存在的规律,例如世界上 20% 的人占有了超过 80% 的财富;20% 最受欢迎的商品,贡献超过了 80% 的销售额等等。 二八定律背后的规律是 Zipf 分布法则,它是美国学者 G.K. 齐普夫在统计英文单词出现频率时发现的规律。简单说就是如果把频率出现最高的单词的频率看作是 1 的话,第二个出现的频率是二分之一,第三个是三分之一,依此类推,出现的频率是它排名的某次幂分之一。

图 1 二八原则和 Zipf 分布

图 1 的右图是 facebook 上统计的 NBA 各球队受赞次数排名,它也基本符合 Zipf 分布。

在互联网时代,还有一个知名的理论-长尾效应,举例来说就是某个网站的用户或者商品的数量非常的多,但是大部分都是访问频率(或价值)极低的,这条尾巴可以很长。长尾的存在对大数据分析带来挑战,因为它的基数(cardinality)特别高,如何从中快速找到高价值的商品或者用户,是一个迫切而难度很高的任务。

图 2 长尾

现在来看一个典型的 Top-N 查询示例。该查询是选择在 2015 年 10 月 1 日,地址在北京,销售商品按价格之和排序(倒序),找前 100 个。

在 Kylin v1.5 之前,SQL 中的 group by 列,需声明成维度,所以这个 Cube 的维度中要有日期,地点和商品名,度量是 SUM(PRICE) 。图 3 展示了一个这样设计 Cube。因为商品的基数很大,计算的 cuboid 的行数会很多;而度量值 SUM(PRICE) 是非排序的,因此需要将这些纪录都从存储器读到 Kylin 查询引擎中(内存), 然后再排序找出最高的纪录;这样的解决办法总开销较大

图 3 用普通度量处理 Top N 查询

针对上面的情形,Kylin 开发团队决定另辟蹊径来处理这种查询,研究了多种 Top-N 的解决方法;由于在大数据的背景下,算法要求一定是可并发执行的,计算结果是需要可再次合并的,而计算结果的少量误差是可以接受的; 最终 Kylin 选择了 Space-Saving 算法 [1],以及它的一个衍生版 Parallel Space-Saving[2],并在此之上做了特定的优化。这种算法的优势是使用较少的空间,同时保证较高的精确度。

有了 Top-N 之后,Cube 的设计会比以前简单很多,因为像刚才的商品名会被挪到 Measure 中去,在 Measure 里按 Sum 值做倒序,只保留最大的若干值。

图 4 使用 Top N 度量的 Cube

值得一提的是需要用多少空间运算 Top-N。简单来说存储空间越多准确率越高。我们通过使用生成一些样本数据然后用 Space-Saving 计算,并且跟真实结果做比较,发现 50 倍空间对于普通的数据分布是够用的。也即,用户需要 Top 100 的结果,Kylin 对于每种组合条件值,保留 Top 5000 的纪录, 并供以后再次合并。这样即使多次合并, Top100 依然是比较接近真实结果 。

图 5 Top N 度量的合并

Top-N 的优点:因为它只保留 Top 的记录,会让 Cube 空间大幅度减少,而查询性能大大提升。在一个典型的例子里,改用 Top-N 后,Cube 的大小减少了 90%,而查询时间则只有以前的 10% 不到。

缺点是它可能是近似的结果(当 50 倍空间也无法容纳所有基数的时候)。如果业务场景需要绝对精确的话,它可能不适合。

Top-N 误差率由很多因素决定的

  1. 数据的分布:数据分布越陡,误差越小。
  2. 算法使用的空间:如果对精度要求高的话,可以选择用更多的空间换取更精准的准确率 。在实际使用中,可以做一些比较以了解误差情况。

未来 Top N 的功能将有了进一步提升,例如可以将多个维度放入到 Top N 度量中,使用非字典编码等,敬请期待。

[1] Ahmed Metwally, et al. “Efficient computation of frequent and top-k elements in data streams”. Proceeding ICDT’05 Proceedings of the 10th international conference on Database Theory, 2005.

[2]Massimo Cafaro, et al. “A parallel space saving algorithm for frequent items and the Hurwitz zeta distribution”. Proceeding arXiv: 1401.0702v12 [cs.DS] 19 Setp 2015.

作者介绍

史少锋,Kyligence 技术合伙人兼资深架构师,Apache Kylin 核心开发者和项目管理委员会成员(PMC),专注于大数据分析和云计算技术。曾任 eBay 全球分析基础架构部大数据高级工程师,IBM 云计算部门软件架构师;曾是 IBM 公有云 Bluemix DevOps 团队核心成员,负责平台的规划、开发和运营。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-08-07 19:004580

评论

发布
暂无评论
发现更多内容

千万级学生系统考试试卷存储架构设计

Trent

架构训练营 存储架构

太卷了! 八股文、算法张口就来?2022版Java面试手册帮你轻松拿下

Java架构追梦

Java 程序员 后端开发

设计千万级学生管理系统的考试试卷存储方案

流火

5G+实时云渲染,让元宇宙应用触手可及

3DCAT实时渲染

5G 虚拟仿真 元宇宙 实时渲染 实时云渲染

国内做得好的进销存软件有哪些啊?

优秀

进销存管理系统

企评家|为什么说我们需要企业成长性评价

企评家

从艺赛旗iS-RPM,看国产流程挖掘产品的发展与特性

王吉伟频道

RPA 超自动化 业务流程优化 流程挖掘 任务挖掘

对话九阳股份信息总监刘大勇:企业数智化转型关键要素

大咖说

阿里云 智篆商业 九阳 数智化转型

基于边缘计算 Client-Edge-Server 业务模型实践

火山引擎边缘云

边缘计算 实时音视频 端边云协同架构

OpenHarmony硬件资源池化架构介绍

科技汇

架构设计之「入口统一」原则

凌晞

架构 软件设计原则

模块四作业(试卷存储方案)

Dean.Zhang

多分支集成发布各种坑怎么填?

阿里云云效

云计算 阿里云 分支 多分支集成 分支策略

一文带你看懂ATM的应用权限访问控制能力

科技汇

聚焦分布式云+FinOps,腾讯云发布多款容器新品助推企业降本增效

科技热闻

企评家|上海海欣集团股份有限公司成长性报告简述

企评家

Java面试通关秘籍:笔记导图+面试文档+视频讲解

Java架构追梦

Java 程序员 后端开发

“刘畊宏女孩”背后的居家健身,市场潜力有多大?

易观分析

刘畊宏健身 健身市场

Flink快速入门

星期35

PerfDog赋能手机芯片行业,提升游戏性能用户体验

WeTest

企评家|宁波富达股份有限公司成长性报告简述

企评家

前端入门第一弹 | 开发工具与配置

🇫 🇮 🇸 🇭

MapStruct使用指南

星期35

[版本更新] PolarDB-X on OSS 提供冷热数据分离存储

阿里云数据库开源

数据库 阿里云 开源 PolarDB-X

元宇宙的本质特征是五大融合

CECBC

OpenMLDB Meetup No.2 会议纪要

第四范式开发者社区

人工智能 机器学习 数据库 特征 特征平台

元宇宙里开豪车

CECBC

Java工程师面试题汇总,全会月薪至少3W

Java架构追梦

Java 程序员 后端开发

集齐多种功能的团队协作软件!

Liam

前端 后端 Jmeter Postman swagger

电脑盘符的正确用法

源字节1号

软件开发

Apache Kylin的Top-N近似预计算_开源_史少锋_InfoQ精选文章