写点什么

使用 TensorFlow 的递归神经网络(LSTM)进行序列预测

  • 2016-07-06
  • 本文字数:4120 字

    阅读完需:约 14 分钟

本篇文章介绍使用 TensorFlow 的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用 LSTM 模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。

所以呢,这里是基于历史观察数据进行实数序列的预测。传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情。

在这个例子里将预测几个函数:

  • 正弦函数:sin

  • 同时存在正弦函数和余弦函数:sin 和 cos

  • x*sin(x)

首先,建立 LSTM 模型,lstm_model,这个模型有一系列的不同时间步的 lstm 单元(cell),紧跟其后的是稠密层。

复制代码
def lstm_model(time_steps, rnn_layers, dense_layers=None):
def lstm_cells(layers):
if isinstance(layers[0], dict):
return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps']), layer['keep_prob'])
if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'])
for layer in layers]
return [tf.nn.rnn_cell.BasicLSTMCell(steps) for steps in layers]
def dnn_layers(input_layers, layers):
if layers and isinstance(layers, dict):
return skflow.ops.dnn(input_layers,
layers['layers'],
activation=layers.get('activation'),
dropout=layers.get('dropout'))
elif layers:
return skflow.ops.dnn(input_layers, layers)
else:
return input_layers
def _lstm_model(X, y):
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers))
x_ = skflow.ops.split_squeeze(1, time_steps, X)
output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
output = dnn_layers(output[-1], dense_layers)
return skflow.models.linear_regression(output, y)
return _lstm_model

所建立的模型期望输入数据的维度与(batch size,第一个 lstm cell 的时间步长 time_step,特征数量 num_features)相关。
接下来我们按模型所能接受的数据方式来准备数据。

复制代码
def rnn_data(data, time_steps, labels=False):
"""
creates new data frame based on previous observation
* example:
l = [1, 2, 3, 4, 5]
time_steps = 2
-> labels == False [[1, 2], [2, 3], [3, 4]]
-> labels == True [2, 3, 4, 5]
"""
rnn_df = []
for i in range(len(data) - time_steps):
if labels:
try:
rnn_df.append(data.iloc[i + time_steps].as_matrix())
except AttributeError:
rnn_df.append(data.iloc[i + time_steps])
else:
data_ = data.iloc[i: i + time_steps].as_matrix()
rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_])
return np.array(rnn_df)
def split_data(data, val_size=0.1, test_size=0.1):
"""
splits data to training, validation and testing parts
"""
ntest = int(round(len(data) * (1 - test_size)))
nval = int(round(len(data.iloc[:ntest]) * (1 - val_size)))
df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:]
return df_train, df_val, df_test
def prepare_data(data, time_steps, labels=False, val_size=0.1, test_size=0.1):
"""
Given the number of `time_steps` and some data.
prepares training, validation and test data for an lstm cell.
"""
df_train, df_val, df_test = split_data(data, val_size, test_size)
return (rnn_data(df_train, time_steps, labels=labels),
rnn_data(df_val, time_steps, labels=labels),
rnn_data(df_test, time_steps, labels=labels))
def generate_data(fct, x, time_steps, seperate=False):
"""generate data with based on a function fct"""
data = fct(x)
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps)
train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True)
return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test

这将会创建一个数据让模型可以查找过去 time_steps 步来预测数据。比如,LSTM 模型的第一个 cell 是 10 time_steps cell,为了做预测我们需要输入 10 个历史数据点。y 值跟我们想预测的第十个值相关。
现在创建一个基于 LSTM 模型的回归量。

复制代码
regressor = skflow.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
n_classes=0,
verbose=1,
steps=TRAINING_STEPS,
optimizer='Adagrad',
learning_rate=0.03,
batch_size=BATCH_SIZE)

预测 sin 函数

复制代码
X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9700, epoch #119, avg. train loss: 0.00082, avg. val loss: 0.00084
# Step #9800, epoch #120, avg. train loss: 0.00083, avg. val loss: 0.00082
# Step #9900, epoch #122, avg. train loss: 0.00082, avg. val loss: 0.00082
# Step #10000, epoch #123, avg. train loss: 0.00081, avg. val loss: 0.00081

预测测试数据

复制代码
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.000776

真实 sin 函数

预测 sin 函数

预测 sin 和 cos 混合函数

复制代码
def sin_cos(x):
return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x)
X, y = generate_data(sin_cos, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9500, epoch #117, avg. train loss: 0.00120, avg. val loss: 0.00118
# Step #9600, epoch #118, avg. train loss: 0.00121, avg. val loss: 0.00118
# Step #9700, epoch #119, avg. train loss: 0.00118, avg. val loss: 0.00118
# Step #9800, epoch #120, avg. train loss: 0.00118, avg. val loss: 0.00116
# Step #9900, epoch #122, avg. train loss: 0.00118, avg. val loss: 0.00115
# Step #10000, epoch #123, avg. train loss: 0.00117, avg. val loss: 0.00115

预测测试数据

复制代码
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.001144

真实的 sin_cos 函数

预测的 sin_cos 函数

预测 x*sin 函数 ```

def x_sin(x):
return x * np.sin(x)
X, y = generate_data(x_sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)

create a lstm instance and validation monitor

validation_monitor = skflow.monitors.ValidationMonitor(X[‘val’], y[‘val’], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X[‘train’], y[‘train’], validation_monitor, logdir=LOG_DIR)

> last training steps

Step #32500, epoch #401, avg. train loss: 0.48248, avg. val loss: 15.98678

Step #33800, epoch #417, avg. train loss: 0.47391, avg. val loss: 15.92590

Step #35100, epoch #433, avg. train loss: 0.45570, avg. val loss: 15.77346

Step #36400, epoch #449, avg. train loss: 0.45853, avg. val loss: 15.61680

Step #37700, epoch #465, avg. train loss: 0.44212, avg. val loss: 15.48604

Step #39000, epoch #481, avg. train loss: 0.43224, avg. val loss: 15.43947

复制代码
预测测试数据

mse = mean_squared_error(regressor.predict(X[‘test’]), y[‘test’])
print (“Error: {}”.format(mse))

61.024454351

复制代码
真实的 x\*sin 函数
![](https://static001.infoq.cn/resource/image/15/c0/15117ac90c23755ac54f86d2ae723fc0.png)
预测的 x\*sin 函数
![](https://static001.infoq.cn/resource/image/a2/58/a213b516943f882848665cdf35aea858.png)
译者信息:侠天,专注于大数据、机器学习和数学相关的内容,并有个人公众号:bigdata\_ny 分享相关技术文章。
英文原文:[Sequence prediction using recurrent neural networks(LSTM) with TensorFlow](http://mourafiq.com/2016/05/15/predicting-sequences-using-rnn-in-tensorflow.html)
2016-07-06 19:0024326
用户头像

发布了 43 篇内容, 共 31.4 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

给弟弟的信第26封|做一个懂得感恩的人

大菠萝

28天写作

PassJava 开源 (九) :Spring Cloud 整合 Gateway 网关

悟空聊架构

SpringCloud Gateway passjava 悟空聊架构

基于流程管理,提高工作质量和效率

流程管理

性能分析之Linux系统平均负载案例分析

zuozewei

Linux 性能分析 12月日更

云原生时代,需要什么样的数据库?

博文视点Broadview

最强最全面的大数据SQL系列

五分钟学大数据

sql 大数据 hive

饿了么资深架构师分享云上基础架构演进

阿里云弹性计算

云上架构 运维峰会

技术揭秘!百度搜索中台低代码的探索与实践

百度Geek说

中台 后端 低代码 搜索

Jira Software 年度总结:12个重要功能大放送!

Atlassian

DevOps 敏捷 Atlassian Jira ITSM

Golang协程之了解管道的缓存能力

恒生LIGHT云社区

Go golang

网络安全好学吗?网络安全入门篇,安装渗透测试系统kali全套教学

学神来啦

运维 网络安全 渗透测试· kali基础 kali Linux

一文带你了解数据库连接池的必要性

编程江湖

数据库 JAVA开发

教你Python字符串的基本操作:拆分和连接

华为云开发者联盟

Python 连接 字符串 拆分 拆分字符串

版本不兼容Jar包冲突该如何是好?

vivo互联网技术

jar Java 开发

10个Node.js 开发人员必须使用的IDE

编程江湖

node.js

kafka丢失和重复消费数据

编程江湖

大数据 kafka

OPPO小布助手算法系统探索、实践与思考

安第斯智能云

算法

SpringBoot应用和PostgreSQL数据库部署到Kubernetes上的一个例子

汪子熙

Kubernetes k8s 28天写作 docker build 12月日更

面试被问一致性hash?看这一篇就够了

公众号:程序猿成神之路

迭代你好,我是冲刺

华为云开发者联盟

Scrum 开发 迭代 冲刺 迭代增量开发

完蛋,我的事务怎么不生效?

秦怀杂货店

MySQL 数据库 事务 事务失效

滴滴数据通道服务演进之路

Kafka中文社区

初探语音识别ASR算法

华为云开发者联盟

算法 语音识别 ASR 语音转写文章 声学模型

智算未来 | 2021新一代人工智能院士高峰论坛智算网络分论坛成功举办

OpenI启智社区

PingCAP x 亚马逊云科技,为 TiDB 云端体验“加冕”

PingCAP

大数据开发Hive之如何进行数据抽样

@零度

大数据 hive

Arctic:网易数帆开放式流批一体表服务 | BDTC 精彩回顾

网易数帆

大数据 数据湖 iceberg 流批一体 Arctic

共筑AI开源繁荣生态 | 新一代人工智能院士高峰论坛深度学习框架分论坛成功举办

OpenI启智社区

【转】java开发之spring面试题

@零度

JAVA开发 spring框架

Soul运维总监尤首智:企业如何从0到1建设云上运维体系

阿里云弹性计算

阿里云 云上架构 运维峰会

使用TensorFlow的递归神经网络(LSTM)进行序列预测_语言 & 开发_Mourad_InfoQ精选文章