写点什么

AWS 瞄准科学社区,为高性能计算提供新的资源

  • 2011-10-10
  • 本文字数:1521 字

    阅读完需:约 5 分钟

Amazon Web Services (AWS) 团队公布了一系列资源,瞄准科学社区对高性能计算的需要。AWS 特别强调:在Amazon 云环境中,他们的“spot 价格体系”市场可以提供价格优惠的海量规模计算能力。

科学组织在处理数据分析时,常常要面对海量计算活动的需求。在AWS 团队指出的一个案例研究中,一家排名全球前五的制药公司在寻找分子建模方法,以处理数百万种化合物组合。有了 Cycle Computing 的帮助,该公司在 AWS 上使用一个有30000 个核的集群,仅用不到8 个小时就完成了任务。该集群跨越两个大陆,使用将近27T 内存,每小时花费1279 美元。Cycle Computing 指出:他们的客户从未想过在公司内部完成这样的科学分析,因为会把他们自己数据中心所有的资源消耗殆尽,而且长达数周。如果一家组织试图在内部完成如此重大的计算任务,常常需要非常大量的CPU,而且在任务启动之前会一直处于空闲状态。这也是Microsoft 在与 Pharm Exec 的访谈中提到的:

看看所有进入蛋白质折叠【译注】的数据。有研究大型分子产品的公司,这些产品一般被称为单克隆抗体(monoclonal antibody)。这些分子的活动主要是如何把自己折叠起来。在研究过程中,他们希望看到产品的基本序列,也想计算出分子的折叠过程。传统方式中,他们会维护海量的 CPU,这些 CPU 的计算围绕着上述活动展开,一般需要 70 个小时才能完成整个的蛋白质折叠分析。使用基于云的基础设施模式,服务器不需要一直开机。科学家可以在需要的时候再分析数据,不需要,服务器就不必运行。

AWS 声称:这个由 Cycle Computing 管理的计算集群不仅仅在规模和性能上令人侧目,同时在价格上也非常合算,因为他们使用了 Spot Instance 实例。与 Reserved 或 On-Demand EC2 实例不同,启动 Spot 实例是投标过程的一部分。客户制定出他们愿意为 Spot 实例每小时支付多少钱,只要 Spot 的价格仍然低于客户给出的阈值,Spot 实例就会一直运行。当价格阈值超过后,Spot 实例就会停止。Spot 的价格会比 Reserved 或 On-Demand 实例的价格便宜 50%,因此用它来完成只有财务上合算时才运行的、低优先级的计算工作,或是补充已有的 On-Demand 负载,都是不错的选择。

在新的“Spot and Science”页面上,对于如何利用类似Spot 市场提供的这些短时计算资源,AWS 团队点出了一些架构上的考量。AWS 提出四种架构风格,可以作为容纳潜在中断风险的解决方案,包括:Map/Reduce、Grid、基于队列的、以及基于检查点(Checkpoint)的架构。每种风格要么建议使用可快速完成的小量工作负载,要么建议当运行主机中断时重新运行,或是使用检查点定期保存工作。

AWS 的“Spot and Science”页面还包括案例研究、用例展示、成本节省分析、辅导和架构指南。即使用户不属于科学社区,如果希望用云完成高性能计算,也可以找到在这些用例中找到相关信息。 HPC in the Cloud 网站认为:

制药公司对云有相对高的使用率,这意味着对于其他公司来说,即使他们不需要找到疾病治愈方法或是改善人们的健康,他们也可以参考这个行业的案例,以了解云在真实世界中的使用方法。

【译注】蛋白质折叠(protein folding):蛋白质的基本单位为氨基酸,而蛋白质的一级结构指的就是其氨基酸序列,蛋白质会由所含氨基酸残基的亲水性、疏水性、带正电、带负电……等等特性通过残基间 的相互作用而折叠成一立体的三级结构。虽然蛋白质可在短时间中从一级结构折叠至立体结构,研究者却无法在短时间中从氨基酸序列计算出蛋白质结构,甚至无法 得到准确的三维结构。因此,研究蛋白质折叠的过程,可以说是破译“第二遗传密码”——折叠密码(folding code)的过程。具体可参考百度百科

查看英文原文: InfoQ: AWS Targets Scientific Community with New Resources for High Performance Computing

2011-10-10 03:321874
用户头像

发布了 479 篇内容, 共 173.3 次阅读, 收获喜欢 52 次。

关注

评论

发布
暂无评论
发现更多内容

一个草根的日常杂碎(10月9日)

刘新吾

随笔杂谈 生活记录 社会百态

每个数据科学家都应该知道的5个概念

计算机与AI

学习 数据科学

优质数据库管理工具盘点,看看这三个软件的区别

BinTools图尔兹

数据库 sql 云原生 工具 编辑器

容器技术之发展简史

阿里云基础软件团队

云原生

Java-技术专题-Pattern类与Matcher类详解

码界西柚

JVM系列笔记 - 寄存器

朱华

JVM

你不知道的java对象序列化的秘密

程序那些事

Java java序列化 序列化的秘密

JDK14性能管理工具:jmap和jhat使用介绍

程序那些事

内存泄露 JDK14 jmap jhat

为什么学Go(二)

soolaugust

Go 语言

【高并发】面试官:讲讲高并发场景下如何优化加锁方式?

冰河

性能优化 高并发 线程安全 同步 加锁

当我们在谈论跨平台的时候 ——— 我们在说什么

iHTC

跨平台

通俗易懂和你聊聊寄存器那些事(精美图文)

苹果看辽宁体育

后端 计算机 汇编

面经手册 · 第13篇《除了JDK、CGLIB,还有3种类代理方式?面试又卡住!》

小傅哥

Java 字节码编程 asm 动态代理 cglib

华为程序员发现孩子不是自己的,怒提离婚!女方不要孩子!绿他的竟然是个酒吧混混!

程序员生活志

华为 程序员

区块链需与5G等技术打好“组合拳”

CECBC

区块链 5G

正则表达式知识总结

iHTC

正则表达式

随想

Nydia

一个草根的日常杂碎(10月11日)

刘新吾

随笔杂谈 生活记录 社会百态

商业模式和盈利模式的思考

iHTC

商业模式 盈利模式 地摊经济

极客时间 - 架构师一期 - 第四周作业

_

第四周作业 架构师一期

第四周总结

_

极客大学架构师训练营 第四周总结

Guava-技术专题-Cache用法介绍

码界西柚

融合与共生之下,区块链都能“+”什么?

CECBC

区块链 大数据

Apple Developer 开发者账号申请&实名认证【2020】

iHTC

Apple Developer iOS Developer 苹果实名认证

iOS Handle Refunds 处理退款 --- WWDC20(Session 10661)

iHTC

WWDC2020 wwdc iap 苹果退款 iOS退款

如何优化多表查询情况下的查询性能问题

迹_Jason

数据库设计 架构设计 查询优化 数据优化

SpringBoot-技术专题-多环境下maven打包

码界西柚

第四周 系统架构学习总结

蓝黑

极客大学架构师训练营

一个草根的日常杂碎(10月10日)

刘新吾

随笔杂谈 生活记录 社会百态

我们可以把Adapter精简到什么地步

mengxn

RecyclerView BetterAdapter Adapter

通过MapReduce降低服务响应时间

万俊峰Kevin

mapreduce Go 语言

AWS瞄准科学社区,为高性能计算提供新的资源_架构_Richard Seroter_InfoQ精选文章