2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

百度技术沙龙第 2 期回顾:分布式与服务扩展(含演示文档下载)

  • 2010-05-19
  • 本文字数:1634 字

    阅读完需:约 5 分钟

在百度技术沙龙第 2 期(5 月 15 日)的活动上,我们邀请到了百度分布式高级工程师马如悦以及 FreeWheel 的核心系统技术总监王迪分别分享了关于分布式以及服务扩展两个话题,本文将对他们的演讲内容进行一下简单的总结,并为大家提供了演示文档的下载

为 Hadoop 的发展贡献自己的力量

在马如悦的演讲中,他主要介绍了百度的大规模数据存储、数据分析以及数据索引,主要包括以下内容点:

  • 大规模数据存储
    • Lustre 和 HDFS
    • 系统结构
    • HDFS 优势、不足
  • 大规模数据分析
    • MPI 和 MapReduce
    • MapReduce 概念模型、实现模型
    • MapReduce-Hadoop 实现
  • 大规模数据索引
    • MySQL 和 HBase 对比
    • HBase 详解
  • 在以上三方面百度遇到的问题、对策和原则

其中,马如悦提到,百度现在要处理的数据量非常庞大:存储 20PB+ 数据,每日新增数据 10TB+,每天处理的数据 1PB+,每天提交 10K+ 次作业。现在使用的文件系统是 HDFS,数据存储是 HBase,有超过 2K 台服务器节点,每个节点为 2*4 core。现在遇到的一个棘手问题便是 namenode 的瓶颈问题:因为要存储大量的(小)文件,使 namenode 的压力非常大,他们刚刚采购了 48GB 的内存,但是这 48GB 的内存,预计只能坚持到今年年底,到时候,可能会采购 96GB 的内存来紧急应对这个问题。所以百度在 namenode 的分布式方面,进行了很多研究。马如悦建议大家:

如果对这方面感兴趣的话,可以参考 Linux 2.6.34 中的 Ceph 文件系统,它就是一个基于 PB 规模的分布式文件系统。

最后,马如悦提到了百度目前正在重点研究 / 解决的几个问题 / 方向,他建议如果大家想对 Hadoop 做出一些成绩的话,这几个方向也是现在的热点:

  • HDFS namenode 的分布式改进
  • HDFS datanode 的读写异步化
  • MapReduce 的 jobtracker 的分布式改进
  • MapReduce 的新作业和任务调度器
  • MapReduce 的 Hadoop C++ 扩展框架

有读者对 Hadoop C++ 的扩展非常感兴趣,马如悦对此阐述了一下百度 Hadoop 的使用方式:

我们会定期在 Hadoop 的官方版本上找到一个稳定版本,然后进行自定义开发。过一段时间,当我们发现官方的版本如果增加了很多新增加的功能,比我们好很多,我们再开一个新的分支,把我们的功能移上去。我们的工程师在开发 Hadoop 的 C++ 扩展,我们大概是在 0.19 版分出来的,至今我们发现 chunk 版本仍然跑不过百度自己的版本,所以我们不会去做移植。HCE 在我们的版本上开发的,所以如果转移到 chunk 上,会有些难度,需要做一些调整,这会花费一些时间。上周我们工程师刚完成了一个版本,马上就可以为大家贡献出一个链接去试用。

以数据驱动为中心

王迪是 FreeWheel 核心系统的技术总监,从 07 年 FreeWheel 创立起,他全程参与到其广告核心系统的架构设计,也见证了 FreeWheel 从最初的的只有 20 台广告服务器、日均几十万的访问量、不到 1G/ 天的日志量,发展到现在拥有 60 台广告服务器、日均广告请求 5000 万次、日志处理服务器 8 台、日均 4 小时处理日志 200G 这么一个规模。3 年之间,流量增长 20 倍。他主要谈到了以下的一些经验和原则:

  • 应用服务扩展
    • 无状态应用服务
    • 复制与多层次 Cache
  • 数据仓库扩展
    • De-normalization/Pivot
    • Roll up/Data Availability
    • Benchmarking 与查询优化
    • Split-Loading/Sharding
  • 运营原则
    • 50% 运行负载上限 & N+1 Data Center
    • 监控和响应
    • 多阶段部署

很多具体的实践方法,都是针对他们具体的商业模式以及实际工作中摸索出来的,它不一定是“最好”的,但却是最适合的,比如对系统的负载当达到 50% 的时候,就是一个优化和扩容的信号了;再比如,以自动化回归测试为核心,但并未使用 TDD 单元测试,等等等等。

在提问环节,有读者对如何在回归测试中组织测试用例很感兴趣,王迪解释到:

比如我们有 700 个测试用例,需要 QA 做一些数据,可以用 SQL 文件的方式存在本地,然后把请求和预期也同样以文件的方式存在本地,然后在框架运行的时候,把它们载入到数据库当中,然后再服务结束后,再从数据库中取出来。

演讲资料下载

本次百度技术沙龙的演讲资料现在已经可以下载

相关内容

百度技术沙龙(第 1 期)活动总结演讲资料下载

2010-05-19 03:517738

评论

发布
暂无评论
发现更多内容

在MUI框架中对于事件绑定与取消和监听的触发自定义的深入运用与实战

恒山其若陋兮

mui 11月月更

2022-11-16:给你一个数组 nums,我们可以将它按一个非负整数 k 进行轮调, 例如,数组为 nums = [2,4,1,3,0], 我们按 k = 2 进行轮调后,它将变成 [1,3,0,

福大大架构师每日一题

算法 rust 福大大

js事件循环与macro&micro任务队列-前端面试进阶

loveX001

JavaScript

MUI实战之页面初始化与创建子页面对于新页面的实战心得

恒山其若陋兮

前端 mui 11月月更

MUI对于原生导航栏的新页面与关闭页面的预加载的底层代码深入运用【MUI】

恒山其若陋兮

mui 11月月更

从零到一落地接口自动化测试

老张

自动化测试

静悄悄“双十一”背后的“喧嚣”

易观分析

双十一 消费 购物

主成分分析PCA与奇异值分解SVD-高维数据可视化以及参数n_components

烧灯续昼2002

机器学习 算法 降维 sklearn 11月月更

Python进阶(四十五)走进requests库

No Silver Bullet

Python requests 11月月更

微博系统中”微博评论“的高性能高可用计算架构

小虎

架构训练营

[力扣] 剑指 Offer 第二天 - 复杂链表的复制

陈明勇

Go 链表 数据结构与算法 11月月更

作业-week5-设计微博系统中”微博评论”的高性能高可用计算架构

in9

Python进阶(四十六)Python3实现SMTP发送邮件详细教程

No Silver Bullet

发送邮件 SMTP pyhton 11月月更

架构实战营模块5作业

冷夫冲

架构训练营 架构实战

【愚公系列】2022年11月 微信小程序-app.json配置属性之plugins

愚公搬代码

11月月更

大厂前端面试考什么?

loveX001

JavaScript

图解Kafka的RecordBatch结构

石臻臻的杂货铺

kafka Kafka实战 11月月更

python数据分析-pandas基础(1)

AIWeker

Python 数据分析 pandas 11月月更

API工具常见分类

阿泽🧸

11月月更 API工具

安装 Docker Compose

蜗牛也是牛

dubbo + zookeeper + spring 分布式系统

石臻臻的杂货铺

spring dubbo 11月月更

架构训练营作业5-微博评论的高性能高可用计算架构

许四多

JS模块化—CJS&AMD&CMD&ES6-前端面试知识点查漏补缺

loveX001

JavaScript

Python进阶(四十七)python3使用pyinstaller实现将py文件打包成exe文件

No Silver Bullet

Python pyinstaller 11月月更

易观分析:2022年Q3中国网络零售B2C市场交易规模达21971.5亿元

易观分析

零售 交易

2022 Rebase Hackathon启动

谢锐 | Frozen

区块链 defi 黑客松 web3 layer2

JAVA逻辑运算符

默默的成长

前端 java; 11月月更

极速下载 docker镜像

蜗牛也是牛

常见用的设计模式以及实战

想要飞的猪

设计模式 spring设计模式

用户画像分析的应用及搭建

穿过生命散发芬芳

11月月更 用户画像分析

微博评论架构

Johnny

「架构实战营」

百度技术沙龙第2期回顾:分布式与服务扩展(含演示文档下载)_架构_刘申_InfoQ精选文章