50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

Wolfram|Alpha,菱形六十面体背后的细节

  • 2009-05-25
  • 本文字数:1547 字

    阅读完需:约 5 分钟

Wolfram|Alpha 尝试用符号计算使世界上的系统知识变得可计算。它的输入不是一组方程,而是语言。该系统的主要部分包括一个数据整理(data curation)管道,一个算法计算系统、一个语言学处理系统,还有一个自动化的呈现系统。

Wolfram|Alpha 并不是那种返回已有网页的链接的搜索引擎,也不是像 Wikipedia 那样提供“大众化”知识叙述的海洋。它的目标是通过对提供给它的事实进行实时计算,去回答用户提出的问题。

Wolfram|Alpha 不靠搜索 Web 来找答案,它的源数据也并非来自 Web。它内部所用的数据经过整理和审核,大部分来自系统化的第一手来源。即使是实时数据(天气、股票、地震)也经过整理,并与有效数据作比较,如果发现偏差,就会特别标示出来(比如用虚线)。

Wolfram|Alpha 用了“超过 10T 的数据,超过 5 万种算法和模型,还具有超过 1 千个领域的语言学处理能力”。作为 Wolfram|Alpha 引擎基础的 Mathematica 引擎从 1986 年开始持续发展,现在已经有超过 5 百万行的符号代码,运行在世界排名第 66 位的超级计算机上,每天可处理 1.75 亿条请求。服务由 R Systems 提供,可以每秒执行 39.6T 条数学运算,细节如下:

据 Top500 网站和 Dell 一份关于此系统的案例研究( PDF )所说,系统名为 R Smarr ,有 4,608 个处理器核心,用了 576 台“Harpertown” Xeon 机器,共 65,536GB 内存,采用高速的 InfiniBand 数据传输连接。该系统同时使用了 Red Hat Enterprise Linux 和 Microsoft Windows HPC Server 两种操作系统。

Wolfram Research 说,处理 Alpha 请求的将是位于同一地点的 5 套设备。项目中实际上包括两台超级计算机,合起来将近 10,000 个处理器核心以及数百 T 的硬盘。

数据通过统一的 Mathematica 语言接口以及一种按需加载机制取得,取回的数据表示成 Mathematica 表达式,这是一种 S-expressions (符号表达式)。它的大量数据涵盖了很多领域:“数学、物理、化学、天文、地理、语言学、金融等等。”据作者所说,Wolfram|Alpha 和 Mathematica 两种技术的区别在于:

Wolfram|Alpha 在 Web 界面上给出简短、快速、一次性的结果。_Mathematica_ 是一个更深更广的计算环境,用户可以处理任意类型的复杂问题。对 Wolfram|Alpha 和 _Mathematica_ 的扩展会使两者联系得更紧密。

目前 Wolfram|Alpha 的输入语言是英语,但计划未来支持其他语言。用户输入的的歧义性是这样解决的:

它将各种可能的理解作高低排列,然后对它认为最有可能的理解给出答案,并给出其他理解的答案链接。它在排列的时候还会考虑你所在的地理位置——比如离你较近的城市排位会较高。

地理位置根据用户的 IP 地址得出,数据来自 GeoIP ,精度为 5 英里。

每位用户分得的处理时间有限制。如果过了时限而请求还没处理完,它会返回部分的结果。计划中的 Wolfram|Alpha 专业版将没有计算时限列为特性之一。专业版的其他特性还有:

  • 可下载多种格式(例如电子表格、XML、3D 模型、TeX 等等。)

  • 可上传要分析的数据(例如电子表格、文字、图片、网页等等。)

  • 多种可选的显示格式

  • 保存个人或企业的偏好设置

  • 可存储实体定义

  • 动态交互能力

  • 会话历史

Wolfram 未来还有更多计划:“提供给开发者的APIs 专业版和企业版针对内部数据的定制版连接其他形式的内容部署到移动平台等新兴平台。”

以下是使用Wolfram|Alpha 的一个例子,查询“Hurricane Katrina”会得到以下结果:

每个带标题的段落被称为“pod”,其下又可以有“sub-pod”。在查询结果的底部还有信息来源的连接,以及将结果保存为PDF 格式的选项。

Wolfram|Alpha 的标志是一个菱形六十面体( rhombic hexecontahedron )。

最后为您提供一些有用的链接: Wolfram|Alpha 博客(提供最新消息)社区网站参与者网站(反馈、贡献、建议等)

查看英文原文: Wolfram|Alpha, the Details Behind the Rhombic Hexecontahedron

2009-05-25 03:463481
用户头像

发布了 225 篇内容, 共 73.4 次阅读, 收获喜欢 52 次。

关注

评论

发布
暂无评论
发现更多内容

建设领先的AI原生云,百度智能云落地新一代高性能AI计算集群

百度开发者中心

【OpenMLDB Monthly Meeting】2022.2 月会议纪要

第四范式开发者社区

人工智能 数据库 开源 Meetup 特征平台

【Kali】中密码暴力破解工具hydra的使用

学神来啦

网络安全 字典 kali kali Linux

华为SmartCare和AUTIN品牌升级:助力运营商走出5G发展迷宫

脑极体

【技术学习】一次Node.js站点渗透

H

node.js 网络安全 渗透测试

阿里巴巴如何提升构建的效率 | 阿里巴巴DevOps实践指南

阿里云云效

阿里巴巴 阿里云 CI/CD 持续交付 构建工具

国内领先的云软件厂商安超云加入,为龙蜥社区注入新动能

OpenAnolis小助手

开源 操作系统 云厂商 国产

星汉未来成为 FinOps 产业标准生态联盟首批会员

星汉未来

云原生 开源社区 成本优化 IT运维

J2PaaS低代码平台,如何赋能开发者,助力企业数字化?

J2PaaS低代码平台

开发者 低代码 企业数字化 地代码平台 J2PaaS

以领先NLP技术构建AI数字疗法体系,聆心智能致力于解开更多“心结”

硬科技星球

网络安全之文件包含漏洞总结

网络安全学海

黑客 网络安全 信息安全 渗透测试 WEB安全

DSTC10 赛道最佳论文揭晓!文心 PLATO 再获殊荣

百度开发者中心

Hadoop HDFS 3.3.1分布式存储搭建

KunlunBase昆仑数据库

国产数据库

多任务学习模型之DBMTL介绍与实现

阿里云大数据AI技术

机器学习 深度学习 数据模型 多任务学习

知识管理——企业数字化转型的新挑战

小炮

昆仑分布式数据库独特的变量读写功能介绍

KunlunBase昆仑数据库

数据库 读写分离

在线TOML转JSON工具

入门小站

工具

如何使用一个有安全性问题的隐私计算技术?

易观分析

隐私计算

亿级月活沙盒平台《迷你世界》背后的黑科技

华为云数据库小助手

GaussDB DDM 华为云数据库

ARP欺骗攻击

喀拉峻

网络安全

Meetup预告|面向云原生的架构及演进

云智慧AIOps社区

开源 云原生 AIOPS 智能运维

开发者说丨如何从零开始构建一个轻量级应用

华为云开发者联盟

Vue 低代码 页面 应用 AppCube

网易X工行:云原生日志系统 Loggie 正式开源!

网易数帆

开源 云原生 日志 Filebeat Loggie

见证中国云势力崛起!博睿数据实力入围2021~2022 Cloud 100 榜单

博睿数据

培训第二弹!全国大学生智能汽车竞赛百度竞速组预告

百度开发者中心

干货|性能提升密钥,由代码细节带来的极致体验

SphereEx

Apache 数据库 开源 ShardingSphere SphereEx

如何为你的企业创建自助服务知识库

小炮

恒源云(GpuShare)_表序编码器的联合实体和关系提取(论文浅谈)

恒源云

自然语言处理 机器学习 深度学习

吉利控股集团与百度深化战略合作

百度开发者中心

2022年2月云主机性能评测报告

博睿数据

RTC 音频质量评价和保障

网易云信

WebRTC

Wolfram|Alpha,菱形六十面体背后的细节_方法论_Abel Avram_InfoQ精选文章