写点什么

浅谈 Tensorflow 分布式架构:parameter server 及优化策略

  • 2019-12-02
  • 本文字数:3380 字

    阅读完需:约 11 分钟

浅谈Tensorflow分布式架构:parameter server及优化策略

当我们想将一个单机的 tensorflow 训练程序改写成分布式训练(多机多卡)的时候,一般有两个大方向的选择:1.完全异步的梯度更新策略,其代表方法是 parameter server 架构。2.同步的梯度更新策略,代表方法有:百度的 ring all-reduce 策略。本文首先介绍 parameter server 架构。

parameter server 策略:

parameter server 异步更新策略是指每个 GPU 或者 CPU 计算完梯度后,无需等待其他 GPU 或 CPU 的梯度计算(有时可以设置需要等待的梯度个数),就可立即更新整体的权值,然后同步此权值,即可进行下一轮计算。



parameter server 的架构


而 Tensorflow 一开始支持分布式的时候,便是这种 parameter server 架构。TensorFlow 一般将任务分为两类 job:一类叫参数服务器,parameter server,简称为 ps,用于存储可训练的参数变量 tf.Variable;一类就是普通任务,称为 worker,用于执行具体的计算。


Tensorflow 支持两种方式实现 parameter server:低阶 API 创建 parameter server 集群方式和 tf.distribute.Strategy 中的 ParameterServerStrategy。

低阶 API 创建 parameter server 集群

完整案例 dist_tf.py:


import tensorflow as tfimport numpy as np
# 创建集群信息,包括ps和worker两种角色。# 集群有两类任务,ps和worker;ps由2个任务组成(一般一个任务是一个机器或者一个分配单元),worker由3个任务组成。ps_hosts = ["xx.xxx.xx.xxxx:oooo", "xx.xxx.xx.xxxx:oooo"]worker_hosts = ["xx.xxx.xx.xxxx:oooo", "xx.xxx.xx.xxxx:oooo", "xx.xxx.xx.xxxx:oooo"]cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
tf.app.flags.DEFINE_string("job_name", "worker", "One of 'ps', 'worker'")tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")FLAGS = tf.app.flags.FLAGS
def main(_): server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) if FLAGS.job_name == "ps": server.join() else: # 会根据job名,将with内的Variable op放到ps tasks,将其他计算op放到worker tasks。默认分配策略是轮询 with tf.device(tf.train.replica_device_setter( worker_device="/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)):
x_data = tf.placeholder(tf.float32, [100]) y_data = tf.placeholder(tf.float32, [100])
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b loss = tf.reduce_mean(tf.square(y - y_data))
global_step = tf.Variable(0, name="global_step", trainable=False) optimizer = tf.train.GradientDescentOptimizer(0.1) train_op = optimizer.minimize(loss, global_step=global_step)
# The StopAtStepHook handles stopping after running given steps. hooks = [tf.train.StopAtStepHook(last_step=1000000)] # The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredTrainingSession(master=server.target, is_chief=(FLAGS.task_index == 0), # 我们制定task_index为0的任务为主任务,用于负责变量初始化、做checkpoint、保存summary和复原 checkpoint_dir="/tmp/tf_train_logs", save_checkpoint_secs=None, hooks=hooks) as mon_sess: while not mon_sess.should_stop(): # Run a training step asynchronously. # See `tf.train.SyncReplicasOptimizer` for additional details on how to # perform *synchronous* training. # mon_sess.run handles AbortedError in case of preempted PS. train_x = np.random.rand(100).astype(np.float32) train_y = train_x * 0.1 + 0.3 _, step, loss_v, weight, biase = mon_sess.run([train_op, global_step, loss, W, b], feed_dict={x_data: train_x, y_data: train_y}) if step % 100 == 0: print("step: %d, weight: %f, biase: %f, loss: %f" % (step, weight, biase, loss_v)) print("Optimization finished.")

if __name__ == "__main__": tf.app.run()
复制代码


对于本例而言,我们需要在对应的 5 台机器上分别运行每个任务,共需执行五次代码,生成五个任务。


python dist_tf.py --job_name=ps --task_index=0python dist_tf.py --job_name=ps --task_index=1python dist_tf.py --job_name=worker --task_index=0python dist_tf.py --job_name=worker --task_index=1python dist_tf.py --job_name=worker --task_index=2
复制代码


低阶 API 创建 parameter server 集群缺点:


概念多,学习曲线陡峭。


单机代码到多机修改的代码量大。


需要多台机子跑不同的脚本,当然这可以通过 k8s 集群管理工具来解决。


PS 和 Worker 的比例不好选取。(建议选取偶数个的 ps,我的经验是 ps 和 worker 的比例是 1:3)


训练速度性能损失较大。(通信代价较高)


parameter server 常见的优化点:


如果有参数量较大的 embedding 变量时,可选择使用 embedding_lookup_sparse_with_distributed_aggregation 函数替代 tf.nn.embedding_lookup_sparse 函数。该函数可将 embedding 的聚合计算都放在变量所在的 PS 端,计算后转成稠密张量再传送到 Worker 上继续网络模型的计算。


tf.device 函数中有一个参数是设置变量在 ps 端放置策略的,可使用 tf.contrib.training.GreedyLoadBalancingStrategy 来替代默认的轮循。优点是:可根据参数的内存字节来完成类似在线垃圾收集的工作。根据 weight 和 bias 的字节数来放置到内存合适的 task 中,带来更好的负载平衡。


当参数有超大量级时(比如 embedding 参数),可在创建变量的时候使用分割变量策略:partitioner=tf.fixed_size_partitioner(ps_nums)


优化 input pipeline。链接:https://www.tensorflow.org/guide/performance/datasets


bandwidth 高带宽范亲和策略,保证多个 ps 分布在不同的物理机上。


Estimator 中的 ParameterServerStrategy 策略


# https://stackoverflow.com/questions/55003279/parameter-server-strategy-with-estimatorstensorflowimport tensorflow as tfimport osimport json
NUM_WORKERS = 1IP_ADDRS = ['localhost']PORTS = [12345]
def model_fn(...): .....
def input_fn(...): .....
复制代码

需要每个机器配置 TF_CONFIG 环境变量

os.environ['TF_CONFIG'] = json.dumps({    'cluster': {        'worker': ['%s:%d' % (IP_ADDRS[w], PORTS[w]) for w in range(NUM_WORKERS)],        'ps': ['%s:%d' % (IP_ADDRS[w], PORTS[w]) for w in range(NUM_WORKERS)]    },    'task': {'type': 'worker', 'index': 0}})
# Method for using ParamterServerStrategystrategy = tf.distribute.experimental.ParameterServerStrategy()
config = tf.estimator.RunConfig(train_distribute=strategy)
classifier = tf.estimator.Estimator( model_fn=model_fn, model_dir='/tmp/multiworker', config=config)tf.estimator.train_and_evaluate( classifier, train_spec=tf.estimator.TrainSpec(input_fn=input_fn), eval_spec=tf.estimator.EvalSpec(input_fn=input_fn))
复制代码


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/69010949


2019-12-02 16:234437

评论

发布
暂无评论
发现更多内容

大数据培训Flink 流怎么来处理 API

@零度

flink 大数据开发

SAP Field Service Management 和微信集成的案例分享和实现介绍

汪子熙

云原生 SaaS SAP 6月月更 Marketing Cloud

软件成分分析(SCA)完全指南

SEAL安全

开源 应用安全 软件安全 软件成分分析 应用安全测试

5种在TypeScript中使用的类型保护

华为云开发者联盟

前端 变量 类型

测试开发【Mock平台】06开发:项目管理(二)Atnd页面搭建经验实战与学习线路梳理

MegaQi

测试平台开发教程 6月月更 测试技术干货

疫情过后,远程办公还在吗,企业如何构建数字化转型

BeeWorks

如何规避开源安全漏洞风险?新思科技OSSRA报告给出建议

BeeWorks

龙蜥社区成立云原生 SIG,引入 3 大核心技术,共建云原生生态

OpenAnolis小助手

开源 技术 云原生 龙蜥社区 sig

软件开发外包的优势,哪些企业适合软件开发外包?

开源直播系统源码

软件开发 直播带货 直播带货源码 视频带货

征文投稿丨基于轻量应用服务器+OSS的中小型应用运维实践

阿里云弹性计算

运维 OSS CI/CD 轻量应用

SAP Marketing Cloud 功能概述(一)

汪子熙

云原生 SaaS SAP 6月月更 Marketing Cloud

搭建个人博客,Docsify+Github webhook+JGit解决方案

艾小仙

Java GitHub webhook jgit halo

【战码先锋】润和赛道正式开启,马上加入赢取双重大礼!

OpenHarmony开发者

Open Harmony

如何串连三个「语言工具」描述简洁清晰的需求?

LigaAI

程序人生 产品经理 需求 产品需求 产品设计与思考

MySQL面试宝典-文件篇

CRMEB

im即时通讯的简介和趋势

BeeWorks

记录那些年 Nacos 的坑

Damon

6月月更

云渲染技术的“公”“私”

Finovy Cloud

服务器 云渲染 元宇宙 渲染器

知识管理对企业意味着什么

小炮

提升“架构思维”?这本书值得一读!

博文视点Broadview

转转统一权限系统的设计与实现(后端实现篇)

转转技术团队

后端 权限控制

我们公司使用了6年的项目部署方案,打包 + 一键部署详解,稳的一批

沉默王二

Java

欧拉扬帆伙伴计划和鲲鹏科研创新使能计划,助力鲲鹏持续成长

科技热闻

C#/VB.NET:从PDF中提取图片

在下毛毛雨

C# .net PDF 提取图像

【直播回顾】OpenHarmony知识赋能六期第一课—OpenHarmony智能家居项目介绍

OpenHarmony开发者

OpenHarmony

ABAP-创建WebService服务

桥下本有油菜花

abap

MySQL采用B+树作为索引的原因

龙空白白

索引结构 MySQL 数据库 索引原理

洞见科技助力华夏银行「隐私计算数据安全平台」建设,赋能金融业务提质增效

洞见科技

金融科技 隐私计算

【PIMF】OpenHarmony啃论文俱乐部—盘点开源鸿蒙三方库【1】

离北况归

OpenHarmony

BOM核心——window对象之窗口

大熊G

JavaScript 前端 6月月更

【Python技能树共建】常用标准库

梦想橡皮擦

Python 6月月更

浅谈Tensorflow分布式架构:parameter server及优化策略_语言 & 开发_Alex-zhai_InfoQ精选文章