写点什么

《Spotify 的入云之旅》系列之一——事件传输系统

  • 2016-05-02
  • 本文字数:3259 字

    阅读完需:约 11 分钟

写在之前

当 Spotify 的用户打开客户端听歌或者搜索音乐人,用户的任何一个触发的事件都会传送回 Spotify 的服务器。事件传输系统(也即,日志收集系统)是个有趣的项目,确保全球用户使用 Spotify 客户端所产生的事件都完全、安全的发送到数据中心。在本系列文章中,将讲述 Spotify 在这方面所做过的工作,而且会详细解说 Spotify 新的事件传输系统架构,并回答“为什么 Spotify 会基于 Google 云平台管理建立自己的新系统?”。

在本文章中,首先会阐述当前事件传输系统是如何工作,并分享一些在此架构下的实践经验;在下篇文章里,将描述新事件传输系统的架构设计,更进一步的,解释 Spotify 为什么会选择 Google 云平台的 Cloud Pub/Sub 服务作为所有事件的传输机制;在第三篇,将展示 Spotify 公司如何消费从 Google 的 DataFlow 订阅的事件数据,并分享 Spotify 技术团队采用这一方案的经验总结。

Spotify 的事件传输系统有很多用途,Spotify 大部分产品的设计策略是基于 A/B test 的结果,而这些 A/B test 得依赖于海量、精确的用户数据。Spotify 2015 年发布最受欢迎的特色功能之一是“Discover Weekly”播放列表,它是基于 Spotify 用户播放数据。“Year in music”、“Spotify Party”等其他特色的模块都是对用户播放数据进行数据分析的结果,同时 Soptify 的用户数据也是 Billboard 榜单的数据源。

事件传输系统是 Spotify 公司数据基础设施,它能保证数据以预期的延迟时间完整的传输,并且通过事先定义好的接口发送数据给开发者。用户数据是开发者事先埋点用户点击后产生的结构化数据。
Spotify 大部分事件都是响应用户在 Spotify 客户端的行为而触发的事件,事件在客户端发生后通过日志收集系统 syslog 发送到 Spotify 网关,这些数据通过事件传输系统时都会记录时间戳。为了能监测事件传输和事件传输的完整性,事件记录采用 syslog 时间戳而不是事件在客户端发生的时间戳,因为在事件传到 Spotify 服务器前是无法控制事件。

在 Spotify 公司,所有的用户数据需要发送到中心的 Hadoop 集群。Spotify 收集数据的服务器位于两个州的多个数据中心,但是数据中心之间的带宽是紧缺的资源,因此需要时刻监控带宽的占用情况。
数据接口是根据存储数据的 Hadoop 的位置和存储的格式来定义的,Soptify 所有通过事件传输服务传输的数据都是以 Avro 格式存储在 HDFS 上。传输的数据都是以小时来分桶,这么做的原因是系统遗留问题:Spotify 公司第一个事件传输系统是简单的用 scp 命令,然后按小时从所有的服务器上把 syslog 文件复制到 Hadoop 集群。现在 Spotify 公司所有的数据任务还是按小时分片的,这种接口形式预期将来一段时间还是不会变。

Spotify 的大部分数据读取任务是从小时桶里读取一次。一个 job 的输出会作为另外一个 job 的输入,这样形成一个长的转运 job 链。中间传输的 job 每小时传输一次,并且不做任何数据检查,即使在数据操作的过程中数据源发生了变化。一般出现小时桶里的数据发生变化需要手动去强制启动整个 job 链,相应的下游 job 就会按指定的时间运行。显然地,这是一个耗时耗力的处理过程,并且没有数据回滚的机制,因此需要一个事件传输服务来解决这个问题。数据完整性问题同时也带来的数据传输的延迟,你可以从 Google 的 Dataflow 论文里看到对数据完整性问题的有意思的看法。

当前使用的事件传输系统

系统设计

现在 Spotify 公司生产环境上使用的系统是基于 Kafka 0.7 版本。

(点击放大图像)

图1: 基于Kafka 0.7 点事件传输系统架构图

Spotify 线上运行的事件传输系统是按每小时文件抽象所设计的,它支持从服务器到 HDFS 的流式日志文件,包含事件数据。当所有的日志文件按小时传输到 HDFS 上的过程中会做一个日志格式转化,将原始的 Tab 键分隔的文本转化成 Avro 格式。

当线上正运行的事件传输系统上线时,Kafka 0.7 版本的 Kafka Broker 集群还未能实现稳定的持久化,这导致数据生产者、Kafka Syslog 生产者和 Hadoop 集群之间不能进行持久化。所以等到事件数据写入文件或者 HDFS 才能认为数据已经持久化了。

事件数据到达 Hadoop 集群并不能达到可靠的持久化,这里又面临一个问题:事件传输系统中 Hadoop 集群的单点问题,如果 Hadoop 集群宕机则事件传输系统即挂掉。为了解决这一问题,Spotify 公司确保所有收集事件数据的服务器上有足够多的磁盘空间,当 Hadoop 集群挂掉了,事件数据先缓存到服务器上,等 Hadoop 集群恢复后立即传输所有数据,这种传输策略到恢复时间主要受限于两个数据中心的带宽。

每个服务主机上都有一个 Producer 守护进程,它监控这日志文件并按行批量发送日志数据到 Kafka Syslog 消费者。Producer 并不会关注事件类型或者事件属性,它仅仅把区分日志文件的行数据,并且把所有数据发送到相同的 channel。这意味着所有的事件类型都包含在相同的日志文件里,并且发到同一个 channel 里。Producer 发送日志到 Consumer 后,需要等到 Consumer 成功的把日志持久化到 HDFS,并返回 ACK 给 Producer。当 Producer 收到成功的 ACK 后继续发送后面的日志。

Producer 上的事件数据传到 Consumer 需要经过 Kafka Brokers 和 Kafka Groupers。Kafka Brokers 是 Kafka 的标准组件,而 Kafka Groupers 是由 Spotify 工程师开发的,Grouper 消费本地数据中心的所有事件数据,并进行压缩、批量的发送到 Consumer 的单个 topic。

接下来是数据清洗(ETL)的过程,将 Tab 分隔的文本文件转化成 Avro 格式。这个 job 只是一个常规的 Hadoop MapReduce 任务,采用 Crunch 框架开发。
所有的 Producer 都会持续发送文件结束标记的检查点信息(checkpoint),当一个文件全部持久化到 Hadoop 集群后,Producer 会有且仅有发送一次文件结束标记。生命周期监控持续不断的去查询各数据中心的服务发现系统,探测在某个小时内服务器是否在线。为了确定某个小时的数据是否全部传送到数据中心,ETL 任务会去校验服务器文件的结束标记,如果 ETL 的 job 探测到数据未全部收到,它会延迟处理当前小时到数据。

为了最大化利用 mapper 和 reducer,ETL 的 job 需要知道如何共享输入数据,并且基于Consumer 传过来的事件数来优化共享。

总结

上述事件传输系统的设计主要缺点之一:本地Producer 需要确认发送的数据被持久化存储的数据中心位置。在美国西海岸的服务器,Producer 需要知道数据什么时间写入到London 数据中心。大部分情况下系统工作正常,一旦传输变慢将引起传输延迟并很难恢复。

对比这个问题,需要将转移点放在本地数据中心,这简化里Producer 的设计,只要数据中心的网络正常即可。

暂且放下这些问题,接下来计划构件一个事件传输系统能够可靠的每秒钟推送70 万个事件。重新设计这个事件传输系统同时给Spotify 团队一个机会提高软件的开发过程。

所有的事件一起发送到相同的channel,这会失去对不同QoS 的事件流的灵活管理。同时也会限制实时数据使用,因为任何实时的消费者需要过滤数据,仅仅获取有用的信息。

发送非结构化数据会带来不必要的延迟,因为清洗任务会带来额外的数据转移,当前运行的事件传输系统,清洗任务在处理非结构化数据会多好使大概30 分钟。如果发送的数据是结构化的Avro 格式,当被写入HDFS 会立即处理完。

跟踪处理的数据要按小时完整的数据会引起问题,例如,当机器挂掉,不能发送文件结束的标记。如果有一个缺失的文件结束标记,其他任务需要等到人为的处理才会继续工作。当机器的数量增长时,这个问题变得更明显。

下一步要做的

在Spotify 公司,传输的事件数据在不断的增长。同时系统的负载也在不断的增加,开始经历机器掉电,掉电掉数目开始警告大家,并且意识到系统在负载不断增加的情况下不能维持太久,见图2。

(点击放大图像)

图2

不幸的是,当前线上的事件传输系统已不能再通过迭代开发的方式得到提高了。留在前面唯一能解决问题的方法是重写事件传输系统。


感谢杜小芳对本文的策划和审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-05-02 17:452150
用户头像

发布了 43 篇内容, 共 31.1 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

系统上线最大的难点其实不是技术问题,而是人和管理!

积木链小链

数字化转型 管理系统 智能制造

8 月 9 日,TiDB 社区活动在厦门!瑞幸咖啡、美柚、美图、飞连、福建四大机场、厦门三甲医院的 TiDB 实践分享 & 数据库选型趋势!到场的小伙伴可领瑞幸咖啡!评论区互动参与社区新款周边抽奖~

TiDB 社区干货传送门

社区活动

当 Aily 遇上盈米且慢 MCP,你的 AI 智能助手也能秒变投资顾问

盈米AI开放平台

大模型如何算出最优价格?电商定价策略的变革实践

京东零售技术

代码简洁之道:'两个就是太多'的编程哲学

qife122

设计模式 代码重构

小度首发智能硬件MCP Server,开启物理世界智能交互新时代

科技大数据

AI 英语数字人App的主要功能

北京木奇移动技术有限公司

软件外包公司 AI技术应用 AI数字人

数据治理之构建数据资产目录

天翼云开发者社区

大数据、

等保一体机适用场景与成本分析

等保测评

Web3 项目的外包开发验收

北京木奇移动技术有限公司

区块链开发 软件外包公司 web3开发

OpenAI Agents: 配置,运行

wasa

Web3 项目开发的技术难点

北京木奇移动技术有限公司

区块链开发 软件外包公司 web3开发

Playwright | 元素定位四大法宝:CSS/文本/XPath/语义化定位实战

测试人

等保测评合规性审查:从流程到价值

等保测评

MCP 极简开发 读书笔记2

wasa

添加DNS解析记录时,提醒记录冲突是怎么回事?

防火墙后吃泡面

烟草行业企业综合管理平台(信创版)上线运行

中烟创新

等保合规基础:从定义到实施的关键要点

等保测评

数据治理之数据分类分级

天翼云开发者社区

大数据 数据仓库

Grok 虚拟陪伴很火,但你还可以造一个属于自己的丨社区来稿

声网

前沿论文分享 | 京东零售技术团队5篇论文入选SIGIR 2025

京东零售技术

佛山律协与iCourt围绕法律AI应用达成战略合作

科技汇

如何构建跨语言、跨文化的海外舆情监测防火墙

沃观Wovision

出海企业 舆情监测 海外舆情监控 沃观Wovision

MSRC安全事件响应流程构建指南

qife122

网络安全 安全事件响应

Apache RocketMQ 荣获 2024 开源创新榜单“年度开源项目”

Apache RocketMQ

阿里云 开源 RocketMQ 云原生 消息队列

应对2025年律师团队持续增长难题,Alpha系统助力律所人效升级

科技汇

数据治理的长效机制

天翼云开发者社区

大数据 数据仓库

产品研发的永恒难题:质量、速度与成本的三角博弈

IPD产品研发管理

产品 产品经理 产品设计 研发管理 产品研发

安全可控的AI底座:灯塔大模型应用开发平台全面实现国产信创兼容适配认证

中烟创新

AI 英语学习数字人 App 的主要功能

北京木奇移动技术有限公司

软件外包公司 AI技术外包 AI数字人

《Spotify的入云之旅》系列之一——事件传输系统_语言 & 开发_侠天_InfoQ精选文章