MXNet 深度学习实战 (28):MXNet 基础 3

阅读数:4 2019 年 12 月 28 日 22:58

MXNet深度学习实战(28):MXNet基础 3

(MXNet 基础)

内容简介
本书分为四大部分:
第一部分为准备篇(第 1~2 章),简单介绍深度学习相关的基础背景知识、深度学习框架 MXNet 的发展过程和优缺点,同时介绍基础开发环境的构建和 docker 的使用,帮助读者构建必要的基础知识背景。
第二部分为基础篇(第 3~7 章),介绍 MXNet 的几个主要模块,介绍 MXNet 的数据读取、数据增强操作,同时介绍了常用网络层的含义及使用方法、常见网络结构的设计思想,以及介绍模型训练相关的参数配置。
第三部分为实战篇(第 8~10 章),以图像分类、目标检测和图像分割这三个常用领域为例介绍如何通过 MXNet 实现算法训练和模型测试,同时还将结合 MXNet 的接口详细介绍算法细节内容。
第四部分为扩展篇(第 11~12 章),主要介绍 Gluon 和 GluonCV。Gluon 接口是 MXNet 推出的用于动态构建网络结构的重要接口,GluonCV 则是一个专门为计算机视觉任务服务的深度学习库。

相信很多程序员在学习一门新的编程语言或者框架时,都会先了解下该语言或者该框架涉及的数据结构,毕竟当你清晰地了解了数据结构之后才能更加优雅地编写代码,MXNet 同样也是如此。在 MXNet 框架中你至少需要了解这三驾马车:NDArray、Symbol 和 Module。这三者将会是你今后在使用 MXNet 框架时经常用到的接口。那么在搭建或者训练一个深度学习算法时,这三者到底扮演了一个什么样的角色呢?这里可以做一个简单的比喻,假如将从搭建到训练一个算法的过程比作是一栋房子从建造到装修的过程,那么 NDArray 就相当于是钢筋水泥这样的零部件,Symbol 就相当于是房子每一层的设计,Module 就相当于是房子整体框架的搭建。

还记得我们在引入深度学习框架时提到的命令式编程(imperative programming)和符号式编程(symbolic programming)吗?在本章中你将实际感受二者的区别,因为 NDArray 接口采用的是命令式编程的方式,而 Symbol 接口采用的是符号式编程的方式。

MXNet深度学习实战(28):MXNet基础 3

购书地址 https://item.jd.com/12620056.html?dist=jd

评论

发布