Python 数据挖掘与机器学习实战 (50):回归分析介 3

阅读数:1 2020 年 1 月 11 日 17:03

Python数据挖掘与机器学习实战(50):回归分析介 3

(回归分析)

内容简介
本书作为数据挖掘和机器学习的读物,基于真实数据集进行案例实战,使用 Python 数据科学库,从数据预处理开始一步步介绍数据建模和数据挖掘的过程。书中主要介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带领读者轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用逻辑回归进行环境数据检测,如何使用 HMM 进行中文分词,如何利用卷积神经网络识别雷达剖面图,如何使用循环神经网络构建聊天机器人,如何使用朴素贝叶斯算法进行破产预测,如何使用 DCGAN 网络进行人脸生成等。本书也涉及神经网络、在线学习、强化学习、深度学习和大数据处理等内容。
本书以人工智能主流编程语言 Python 3 版作为数据分析与挖掘实战的应用工具,从 Pyhton 的基础语法开始,陆续介绍了 NumPy 数值计算、Pandas 数据处理、Matplotlib 数据可视化、爬虫和 Sklearn 数据挖掘等内容。全书共涵盖 16 个常用的数据挖掘算法和机器学习实战项目。通过学习本书内容,读者可以掌握数据分析与挖掘的理论知识及实战技能。
本书内容丰富,讲解由浅入深,特别适合对数据挖掘和机器学习算法感兴趣的读者阅读,也适合需要系统掌握深度学习的开发人员阅读,还适合 Python 程序员及人工智能领域的开发人员阅读。编程爱好者、高校师生及培训机构的学员也可以将本书作为兴趣读物或教材使用。

回归分析是一种应用极为广泛的数量分析方法。它用于分析事物之间的统计关系,侧重考察变量之间的数量变化规律,并通过回归方程的形式描述和反映这种关系,以帮助人们准确把握变量受其他一个或多个变量影响的程度,进而为预测提供科学依据。在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析、时间序列模型,以及发现变量之间的因果关系。

本章要点如下:

  • 了解线性回归的基本概念;
  • 掌握一元线性回归和多元线性回归;
  • 实现基于线性回归的股票特征提取与预测;
  • 了解逻辑回归的基本概念;
  • 实现基于逻辑回归的环境数据检测。

Python数据挖掘与机器学习实战(50):回归分析介 3

购书地址 https://item.jd.com/12623592.html?dist=jd

评论

发布