深度学习入门:基于 Python 的理论与实现 (6):神经网络 3.2.2

阅读数:25 2019 年 11 月 13 日 15:01

深度学习入门:基于Python的理论与实现(6):神经网络 3.2.2

内容简介
本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用 Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等疑难的问题。
本书适合深度学习初学者阅读,也可作为高校教材使用。

(阶跃函数的实现)

这里我们试着用 Python 画出阶跃函数的图(从视觉上确认函数的形状对理解函数而言很重要)。阶跃函数如式(3.3)所示,当输入超过 0 时,输出 1,否则输出 0。可以像下面这样简单地实现阶跃函数。

复制代码
def step_function(x):
    if x > 0:
        return 1
    else:
        return 0

这个实现简单、易于理解,但是参数 x 只能接受实数(浮点数)。也就是说,允许形如 step_function(3.0) 的调用,但不允许参数取 NumPy 数组,例如 step_function(np.array([1.0, 2.0]))。为了便于后面的操作,我们把它修改为支持 NumPy 数组的实现。为此,可以考虑下述实现。

复制代码
def step_function(x):
    y = x > 0
    return y.astype(np.int)

上述函数的内容只有两行。由于使用了 NumPy 中的“技巧”,可能会有点难理解。下面我们通过 Python 解释器的例子来看一下这里用了什么技巧。下面这个例子中准备了 NumPy 数组 x,并对这个 NumPy 数组进行了不等号运算。

>>> import numpy as np
>>> x = np.array([-1.0, 1.0, 2.0])
>>> x
array([-1.,  1.,  2.])
>>> y = x > 0
>>> y
array([False,  True,  True], dtype=bool)

对 NumPy 数组进行不等号运算后,数组的各个元素都会进行不等号运算,生成一个布尔型数组。这里,数组 x 中大于 0 的元素被转换为 True,小于等于 0 的元素被转换为 False,从而生成一个新的数组 y

数组 y 是一个布尔型数组,但是我们想要的阶跃函数是会输出 int 型的 0 或 1 的函数。因此,需要把数组 y 的元素类型从布尔型转换为 int 型。

>>> y = y.astype(np.int)
>>> y
array([0, 1, 1])

如上所示,可以用 astype() 方法转换 NumPy 数组的类型。astype() 方法通过参数指定期望的类型,这个例子中是 np.int 型。Python 中将布尔型转换为 int 型后,True 会转换为 1,False 会转换为 0。以上就是阶跃函数的实现中所用到的 NumPy 的“技巧”。

评论

发布