深度学习入门:基于 Python 的理论与实现 (12):神经网络 3.3&3.3.1

阅读数:27 2019 年 11 月 13 日 15:07

深度学习入门:基于Python的理论与实现(12):神经网络 3.3&3.3.1

内容简介
本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用 Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等疑难的问题。
本书适合深度学习初学者阅读,也可作为高校教材使用。

(多维数组的运算)

如果掌握了 NumPy 多维数组的运算,就可以高效地实现神经网络。因此,本节将介绍 NumPy 多维数组的运算,然后再进行神经网络的实现。

(多维数组)

简单地讲,多维数组就是“数字的集合”,数字排成一列的集合、排成长方形的集合、排成三维状或者(更加一般化的)$N$ 维状的集合都称为多维数组。下面我们就用 NumPy 来生成多维数组,先从前面介绍过的一维数组开始。

>>> import numpy as np
>>> A = np.array([1, 2, 3, 4])
>>> print(A)
[1 2 3 4]
>>> np.ndim(A)
1
>>> A.shape
(4,)
>>> A.shape[0]
4

如上所示,数组的维数可以通过 np.dim() 函数获得。此外,数组的形状可以通过实例变量 shape 获得。在上面的例子中,A 是一维数组,由 4 个元素构成。注意,这里的 A.shape 的结果是个元组(tuple)。这是因为一维数组的情况下也要返回和多维数组的情况下一致的结果。例如,二维数组时返回的是元组 (4,3),三维数组时返回的是元组 (4,3,2),因此一维数组时也同样以元组的形式返回结果。下面我们来生成一个二维数组。

>>> B = np.array([[1,2], [3,4], [5,6]])
>>> print(B)
[[1 2]
 [3 4]
 [5 6]]
>>> np.ndim(B)
2
>>> B.shape
(3, 2)

这里生成了一个 3 × 2 的数组 B。3 × 2 的数组表示第一个维度有 3 个元素,第二个维度有 2 个元素。另外,第一个维度对应第 0 维,第二个维度对应第 1 维(Python 的索引从 0 开始)。二维数组也称为矩阵(matrix)。如图 3-10 所示,数组的横向排列称为(row),纵向排列称为(column)。

图 3-10 横向排列称为行,纵向排列称为列

评论

发布