深度学习入门:基于 Python 的理论与实现 (17):神经网络 3.4.3

阅读数:47 2019 年 11 月 13 日 15:07

深度学习入门:基于Python的理论与实现(17):神经网络 3.4.3

内容简介
本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用 Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等疑难的问题。
本书适合深度学习初学者阅读,也可作为高校教材使用。

(代码实现小结)

至此,我们已经介绍完了 3 层神经网络的实现。现在我们把之前的代码实现全部整理一下。这里,我们按照神经网络的实现惯例,只把权重记为大写字母 W1,其他的(偏置或中间结果等)都用小写字母表示。

复制代码
def init_network():
network = {}
network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
network['b1'] = np.array([0.1, 0.2, 0.3])
network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
network['b2'] = np.array([0.1, 0.2])
network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]])
network['b3'] = np.array([0.1, 0.2])
return network
def forward(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2, W3) + b3
y = identity_function(a3)
return y
network = init_network()
x = np.array([1.0, 0.5])
y = forward(network, x)
print(y) # [ 0.31682708 0.69627909]

这里定义了 init_network()forward() 函数。init_network() 函数会进行权重和偏置的初始化,并将它们保存在字典变量 network 中。这个字典变量 network 中保存了每一层所需的参数(权重和偏置)。forward() 函数中则封装了将输入信号转换为输出信号的处理过程。

另外,这里出现了 forward(前向)一词,它表示的是从输入到输出方向的传递处理。后面在进行神经网络的训练时,我们将介绍后向(backward,从输出到输入方向)的处理。

至此,神经网络的前向处理的实现就完成了。通过巧妙地使用 NumPy 多维数组,我们高效地实现了神经网络。

评论

发布