Python 数据挖掘与机器学习实战 (69):回归分析介 3.6

阅读数:1 2020 年 1 月 11 日 17:04

Python数据挖掘与机器学习实战(69):回归分析介 3.6

(逻辑回归)

内容简介
本书作为数据挖掘和机器学习的读物,基于真实数据集进行案例实战,使用 Python 数据科学库,从数据预处理开始一步步介绍数据建模和数据挖掘的过程。书中主要介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带领读者轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用逻辑回归进行环境数据检测,如何使用 HMM 进行中文分词,如何利用卷积神经网络识别雷达剖面图,如何使用循环神经网络构建聊天机器人,如何使用朴素贝叶斯算法进行破产预测,如何使用 DCGAN 网络进行人脸生成等。本书也涉及神经网络、在线学习、强化学习、深度学习和大数据处理等内容。
本书以人工智能主流编程语言 Python 3 版作为数据分析与挖掘实战的应用工具,从 Pyhton 的基础语法开始,陆续介绍了 NumPy 数值计算、Pandas 数据处理、Matplotlib 数据可视化、爬虫和 Sklearn 数据挖掘等内容。全书共涵盖 16 个常用的数据挖掘算法和机器学习实战项目。通过学习本书内容,读者可以掌握数据分析与挖掘的理论知识及实战技能。
本书内容丰富,讲解由浅入深,特别适合对数据挖掘和机器学习算法感兴趣的读者阅读,也适合需要系统掌握深度学习的开发人员阅读,还适合 Python 程序员及人工智能领域的开发人员阅读。编程爱好者、高校师生及培训机构的学员也可以将本书作为兴趣读物或教材使用。

逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,最大的区别就在于它们的因变量不同,如果是连续的,就是多重线性回归;如果是二项分布,就是 Logistic 回归。

Logistic 回归虽然名字里带“回归”,但它实际上是一种分类方法,主要用于二分类问题(即输出只有两种,分别代表两个类别)。逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证这个求解的模型的好坏。它的优点有:速度快,适合二分类问题;简单、易于理解,可以直接看到各个特征的权重;能容易地更新模型吸收新的数据。它的缺点有:对数据和场景的适应能力有局限性,不如决策树算法适应性强。

逻辑回归的用途主要有以下 3 个方面。

  • 寻找危险因素:寻找某一疾病的危险因素等;
  • 预测:根据模型,预测在不同的自变量情况下,发生某种疾病或某种情况的概率有多大;
  • 判别:实际上跟预测有些类似,也是根据模型,判断某人属于某种疾病或属于某种情况的概率有多大。

逻辑回归的常规步骤:寻找 h 函数(即预测函数),构造 J 函数(损失函数),想办法使得 J 函数最小并求得回归参数(θ)。

Python数据挖掘与机器学习实战(69):回归分析介 3.6

购书地址 https://item.jd.com/12623592.html?dist=jd

评论

发布