写点什么

贾扬清:我对人工智能方向的一点认识

  • 2019-04-23
  • 本文字数:2461 字

    阅读完需:约 8 分钟

贾扬清:我对人工智能方向的一点认识


贾扬清,浙江上虞人,毕业于清华大学自动化系,在加州大学 Berkeley 分校获得计算机博士学位,目前担任阿里计算平台掌门人。


最近几年深度学习的流行,大家一般认为是从 2012 年 AlexNet 在图像识别领域的成功作为一个里程碑。AlexNet 提升了整个业界对机器学习的接受程度:以前很多机器学习算法都处在“差不多能做 demo ”的程度,但是 AlexNet 的效果跨过了很多应用的门槛,造成了应用领域井喷式的兴趣。


当然,任何事情都不是一蹴而就的,在 2012 年以前,很多成功的因素已经开始逐渐显现:2009 年的 ImageNet 数据库奠定了大量标注数据的基础;2010 年开始,IDSIA 的 Dan Ciresan 首次用 GPGPU 进行物体识别;2011 年,北京的 ICDAR 大会上,神经网络在中文离线识别上大放异彩。就算是 AlexNet 中用到的 ReLU 层,早在 2001 年神经科学的文献中就有提及过。所以,一定程度上说,神经网络的成功也是一个水到渠成的过程。2012 年以后的事情,大家可以读到很多,这里就不再赘述。


成功与局限

在看待神经网络成功的同时,我们也要进一步深挖其背后的理论背景和工程背景,为什么神经网络和深度学习在几十年前失败,但是现在却成功了?它成功的原因是什么?而它的局限又在什么地方?我们这里只能片面地说几个重点:


  • 成功的原因,一点是大数据,一点是高性能计算。

  • 局限的原因,一点是结构化的理解,一点是小数据上的有效学习算法。


大量的数据,比如说移动互联网的兴起,以及 AWS 这样低成本获得标注数据的平台,使机器学习算法得以打破数据的限制;由于 GPGPU 等高性能运算的兴起,又使得我们可以在可以控制的时间内(以天为单位甚至更短)进行 exaflop 级别的计算,从而使得训练复杂网络变得可能。要注意的是,高性能计算并不仅限于 GPU ,在 CPU 上的大量向量化计算,分布式计算中的 MPI 抽象,这些都和 60 年代就开始兴起的 HPC 领域的研究成果密不可分。


但是,我们也要看到深度学习的局限性。今天,很多深度学习的算法还是在感知这个层面上形成了突破,可以从语音、图像,这些非结构化的数据中进行识别的工作。在面对更加结构化的问题的时候,简单地套用深度学习算法可能并不能达到很好的效果。有的同学可能会问为什么 AlphaGo 和 Starcraft 这样的算法可以成功, 一方面,深度学习解决了感知的问题,另一方面,我们也要看到还有很多传统的非深度学习算法,比如说 Q-learning 和其他增强学习的算法,一起支撑起了整个系统。而且,在数据量非常小的时候,深度学习的复杂网络往往无法取得很好的效果,但是很多领域,特别是类似医疗这样的领域,数据是非常难获得的,这可能是接下去的一个很有意义的科研方向。


接下去,深度学习或者更广泛地说,AI 这个方向会怎么走?我个人的感觉,虽然大家前几年一直关注 AI 框架,但是近年来框架的同质化说明了它不再是一个需要花大精力解决的问题,TensorFlow 这样的框架在工业界的广泛应用,以及各种框架利用 Python 在建模领域的优秀表现,已经可以帮助我们解决很多以前需要自己编程实现的问题,因此,作为 AI 工程师,我们应该跳出框架的桎梏,往更广泛的领域寻找价值。

挑战

往上走,我们会遇到产品和科研的很多新挑战,比如说:


  • 传统的深度学习应用,比如说语音、图像等等,应该如何输出产品和价值?比如说,计算机视觉现在基本还是停留在安防这个层面上,如何深入到医疗、传统工业,甚至社会关爱(如何帮助盲人看见这个世界?)这些领域,是不仅需要技术,还需要产品的思考的。

  • 除了语音和图像之外,如何解决更多问题。在阿里和很多互联网企业中有一个“沉默的大多数”的应用,就是推荐系统:它常常占据了超过 80%甚至 90%的机器学习算力,如何将深度学习和传统推荐系统进一步整合,如何寻找新的模型,如何对搜索和推荐的效果建模,这些可能没有像语音和图像那么为人所知,却是公司不可缺少的技能。

  • 即使在科研方向,我们的挑战也刚刚开始:Berkeley 的教授 Jitendra Malik 曾经说,“我们以前是手工调算法,现在是手工调网络架构,如果囿于这种模式,那人工智能无法进步”。如何走出手工调参的老路,用智能提升智能,是个非常有意思的问题。最开始的 AutoML 系统依然停留在用大量算力暴力搜索模型结构的层面上,但是现在各种更高效的 AutoML 技术开始产生,这是值得关注的。


机会

往下走,我们会发现传统的系统、体系结构等知识,计算机软件工程的实践,会给 AI 带来很多新的机会,比如说:


  • 传统的 AI 框架都是手写高性能代码,但是模型如此多变,新的硬件平台层出不穷,我们应该如何进一步提升软件效率?我们已经看到有通过编译器技术和传统的人工智能搜索方法来反过来优化 AI 框架,比如 Google 的 XLA 和华盛顿大学的 TVM,这些项目虽然处于早期,但是已经展现出它们的潜力。

  • 平台如何提升整合能力。在开源领域,大家的做法是一个人,一台机器,几个 GPU ,训练比较学院派的模型。但是在大规模应用中,我们的数据量非常大,模型非常复杂,集群还会出现各种调度的挑战(能不能一下子就要求 256 个 GPU ?计算资源是否可以弹性调度?),这些对于我们自己的机器学习平台,以及云上向客户提供的服务,都提出了非常多的挑战。

  • 如何进行软硬件的协同设计。在深度学习的计算模式开始逐渐固化的时候(比如说 CNN ),新硬件和特殊硬件(比如 ASIC )的优势就开始体现出来了。如何实现软硬件的协同设计,防止“硬件出来了,不知道怎么写程序”或者“模型已经变了,硬件一出来就过时了”这样的问题,会是将来几年中很大的方向。


人工智能是一个日新月异的领域,我们有一个笑话说,2012 年的科研成果,现在说起来都已经是上古时代的故事了。快速的迭代带来的大量机遇和挑战是非常令人兴奋的,无论是有经验的研究者还是新学 AI 的工程师,在当今云化,智能化的年代,如果能快速学习并刷新算法和工程的各种挑战,就可以通过算法创新引领并且赋能社会各个领域。这方面,人工智能领域开源开放的各种代码,科研文章和平台给大家创造了比以前更容易的入门门槛,机遇都掌握在我们自己手中。


本文来源:云栖社区合作伙伴“阿里技术”


来源链接:https://yq.aliyun.com/articles/698229


2019-04-23 08:006201

评论

发布
暂无评论
发现更多内容

百度荣获 “2021年中国网络安全产业联盟数据安全工作委员会突出贡献奖”

百度开发者中心

netty系列之:netty中的自动解码器ReplayingDecoder

程序那些事

Java Netty 程序那些事 4月月更

杭州等保测评公司有哪些?分别叫什么?如何能查到?

行云管家

等保 等级保护 等保测评 杭州

eBPF Cilium实战(2) - 底层网络可观测性

北京好雨科技有限公司

Docker Kubernetes PaaS cilium

如何通过Password Vault的XSS漏洞窃取用户密码信息

喀拉峻

网络安全 XSS

易周金融观点 | 数字人民币试点扩大带动增量场景需求

易观分析

金融 数字化人民币

逃离过度努力陷阱

FunTester

FunTester 湛卢 轻松主义

零信任访问控制下企业ABAC的实施问题

Geek_2d6073

“囤菜新宠”预制菜,会是生鲜电商的破局点吗?

易观分析

Docker 实战教程之从入门到提高(一)

汪子熙

Docker Kubernetes 容器 镜像 4月月更

RDP是什么意思?有什么用?

行云管家

运维 网络协议 RDP

crontab命令详细介绍教程,快来围观

CRMEB

重磅!百度安全参编的国家标准《信息安全技术 术语》正式发布

百度开发者中心

俄乌战争下的国产数据库替换思考-墨天轮

墨天轮

数据库 oracle 达梦 gbase8a

如何设计帮助中心才能真正地帮助客户解决问题?

小炮

帮助中心

@所有高校师生,2022全国大学生物联网设计竞赛火热开启,限量礼品等你来拿!

HarmonyOS开发者

HarmonyOS 物联网设计竞赛

PHP项目微信提现功能代码详解

CRMEB

ETL 和数仓建模的设计思路!

五分钟学大数据

4月月更

SAE 联合乘云至达与谱尼测试携手共同抗疫

阿里巴巴云原生

在Linux环境下安装SQLserver2017

春风十里

数据库 Linux SqlServer

自助洗车设备全套多少钱?有了解的吗

共享电单车厂家

自助洗车机价格 自助洗车加盟 自助洗车设备多少钱

直播预告|年营业额百亿的企业都在如何做数字化转型

云智慧AIOps社区

数字化转型 AIOPS 解决方案 智能运维

多个角度论证SeekTiger 生态核心STI的魅力

西柚子

不再单调!快来自定义你的专属背景~

优麒麟

Linux 开源 操作系统 优麒麟 用户登录

盘点近期虎符交易所上线的项目

区块链前沿News

虎符交易所

“转型·破局” 看数字化会员如何重塑企业竞争力

科技热闻

jackson学习之六:常用类注解

程序员欣宸

4月月更

大咖说|阿里巴巴副总裁陈龙:数字技术将在绿色低碳转型中发挥关键作用

大咖说

阿里巴巴 数字化 碳中和

Tapdata PDK 生态共建计划启动!MongoDB、Doris、OceanBase、PolarDB等十余家厂商首批加入

MongoDB中文社区

在Rainbond上部署高可用Apollo集群

北京好雨科技有限公司

AliPLC 智能丢包补偿算法,提升弱网环境的通话质量

阿里云视频云

音视频 音频 视频云 音频算法 丢包补偿

贾扬清:我对人工智能方向的一点认识_AI&大模型_贾扬清_InfoQ精选文章