Python 数据挖掘与机器学习实战 (13):机器学习基础 1.6.2

阅读数:2 2020 年 1 月 8 日 20:57

Python数据挖掘与机器学习实战(13):机器学习基础 1.6.2

(Python 语言使用广泛)

内容简介
本书作为数据挖掘和机器学习的读物,基于真实数据集进行案例实战,使用 Python 数据科学库,从数据预处理开始一步步介绍数据建模和数据挖掘的过程。书中主要介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带领读者轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用逻辑回归进行环境数据检测,如何使用 HMM 进行中文分词,如何利用卷积神经网络识别雷达剖面图,如何使用循环神经网络构建聊天机器人,如何使用朴素贝叶斯算法进行破产预测,如何使用 DCGAN 网络进行人脸生成等。本书也涉及神经网络、在线学习、强化学习、深度学习和大数据处理等内容。
本书以人工智能主流编程语言 Python 3 版作为数据分析与挖掘实战的应用工具,从 Pyhton 的基础语法开始,陆续介绍了 NumPy 数值计算、Pandas 数据处理、Matplotlib 数据可视化、爬虫和 Sklearn 数据挖掘等内容。全书共涵盖 16 个常用的数据挖掘算法和机器学习实战项目。通过学习本书内容,读者可以掌握数据分析与挖掘的理论知识及实战技能。
本书内容丰富,讲解由浅入深,特别适合对数据挖掘和机器学习算法感兴趣的读者阅读,也适合需要系统掌握深度学习的开发人员阅读,还适合 Python 程序员及人工智能领域的开发人员阅读。编程爱好者、高校师生及培训机构的学员也可以将本书作为兴趣读物或教材使用。

Python 语言使用相当广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。

在科学和计算领域,大量的函数库使 Python 语言得到了广泛应用。例如 SciPy 和 NumPy 等许多科学函数库都实现了向量和矩阵运算操作,这些函数库不仅增加了代码的可读性,有简单的学习基础的初学者就可以看懂代码的实际功能,还使得代码更加简单明确。另外,科学函数库 SciPy 和 NumPy 使用底层语言(C 语言和 Fortran 语言)编写,提高了相关应用程序的运行效率。

Python 还可以与绘图工具 Matplotlib 协同工作。Matplotlib 可以非常容易地绘制 2D 和 3D 图形,可视化运行结果,也可以处理科学研究中经常用到的图形。

Python数据挖掘与机器学习实战(13):机器学习基础 1.6.2

购书地址 https://item.jd.com/12623592.html?dist=jd

评论

发布